Abstract

Ultrashort pulsed lasers offer a high potential in precise and efficient material processing and deep understanding of the fundamental laser-material interaction aspects is of great importance. The transient pulse reflectivity in conjunction with the transient absorption influences decisively the laser-material interaction. Direct measurements of the absorption properties by ultrafast time-resolved ellipsometry are missing to date. In this work, a unique pump-probe ellipsometry microscope is presented allowing the determination of the transient complex refractive index with a sub-ps temporal resolution. Measurements on molybdenum show ultrafast optical penetration depth changes of −6% to + 77% already within the first 10 ps after the laser pulse impact. This indicates a significant absorption variation of the pump pulse or subsequent pulses irradiating the sample on this timescale and paves the road towards a better understanding of pulse duration dependent laser ablation efficiency, double or burst mode laser ablation and lattice modifications in the first ps after the laser pulse impact.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1997).
    [Crossref]
  2. C. Y. Chien and M. C. Gupta, “Pulse width effect in ultrafast laser processing of materials,” Appl. Phys., A Mater. Sci. Process. 81(6), 1257–1263 (2005).
    [Crossref]
  3. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  4. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
    [Crossref] [PubMed]
  5. G. Hennig, K.-H. Selbmann, and A. Brockelt, “Laser engraving in gravure industry,” Proc. SPIE 6157, 61570C (2005).
    [Crossref]
  6. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).
  7. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
    [Crossref]
  8. S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).
  9. R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics (Addison-Wesley Publishing Company, 1964).
  10. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
    [Crossref]
  11. G. A. Mourou, D. Du, S. K. Dutta, V. Elner, R. Kurtz, P. R. Lichter, X. Liu, P. P. Pronko, and J. A. Squier, “Method for controlling configuration of laser induced breakdown and ablation,” United States Patent US5656186A (1997).
  12. A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
    [Crossref]
  13. J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
    [Crossref]
  14. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
    [Crossref]
  15. J. Sotrop, J. Winter, S. Rapp, and H. P. Huber, “Understanding laser ablation efficiency,” SPIE Newsroom (2015).
  16. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  17. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
    [Crossref]
  18. D. E. Roberts, A. Du Plessis, and L. R. Botha, “Femtosecond laser ablation of silver foil with single and double pulses,” Appl. Surf. Sci. 256(6), 1784–1792 (2010).
    [Crossref]
  19. P. R. Herman, R. Marjoribanks, and A. Oettl, “Burst-ultrafast laser machining method,” United States Patent US6552301 B2 (2003).
  20. R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
    [Crossref]
  21. J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32(1), 150 (2015).
    [Crossref]
  22. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15(26), 17855–17862 (2007).
    [Crossref] [PubMed]
  23. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref] [PubMed]
  24. M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
    [Crossref]
  25. A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
    [Crossref]
  26. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
    [Crossref]
  27. J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
    [Crossref]
  28. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
    [Crossref]
  29. M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
    [Crossref]
  30. K. J. Schrider, B. Torralva, and S. M. Yalisove, “The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface,” Appl. Phys. Lett. 107(12), 124101 (2015).
    [Crossref]
  31. J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
    [Crossref]
  32. D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
    [Crossref]
  33. X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
    [Crossref]
  34. C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
    [Crossref] [PubMed]
  35. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
    [Crossref]
  36. G. E. Jellison and D. H. Lowndes, “Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry,” Appl. Phys. Lett. 51(5), 352 (1987).
    [Crossref]
  37. N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
    [Crossref]
  38. M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
    [Crossref]
  39. D. H. Auston and C. V. Shank, “Picosecond ellipsometry of transient electron-hole plasmas in germanium,” Phys. Rev. Lett. 32(20), 1120–1123 (1974).
    [Crossref]
  40. M. Y. Frankel, “Optimization of a femtosecond ellipsometer for gold photoreflectance studies,” Opt. Lett. 19(16), 1252–1254 (1994).
    [Crossref] [PubMed]
  41. F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
    [Crossref] [PubMed]
  42. C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
    [Crossref]
  43. T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
    [Crossref]
  44. C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
    [Crossref]
  45. C. Bolme and D. Funk, “Ultrafast dynamic ellipsometry measurements of early time laser ablation of titanium thin films,” Appl. Phys., A Mater. Sci. Process. 92(4), 761–766 (2008).
    [Crossref]
  46. H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
    [Crossref] [PubMed]
  47. R. Shikne and H. Yoneda, “Ultrafast ellipsometric pump-probe diagnostic of liquid metal surface with chirped continuum probe pulses,” Opt. Express 23(16), 20933–20940 (2015).
    [Crossref] [PubMed]
  48. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1997).
  49. M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, “Optical properties of molybdenum single crystals,” Sov. Phys. JETP 33, 1210–1214 (1971).
  50. R. Iffländer, Solid-State Lasers for Materials Processing (Springer, 2001).
  51. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  52. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
    [Crossref]
  53. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
    [Crossref]
  54. S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
    [Crossref]
  55. D. E. Aspnes and A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14(1), 220–228 (1975).
    [Crossref] [PubMed]
  56. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons, 2007).
  57. R. M. A. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland Publishing Company, 1977).
  58. C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse- induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
    [Crossref]
  59. D. von der Linde, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41(10), 991 (1982).
    [Crossref]
  60. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [Crossref]
  61. S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
    [Crossref]
  62. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
    [Crossref]
  63. R. D. Summers, “The optical constants of polished and sputtered molybdenum surfaces,” J. Opt. Soc. Am. 24(10), 261–263 (1934).
    [Crossref]
  64. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
    [Crossref]
  65. J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
    [Crossref] [PubMed]
  66. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals. Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
    [Crossref]
  67. C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
    [Crossref]
  68. J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
    [Crossref]
  69. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
    [Crossref]
  70. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express 20(9), 10330–10338 (2012).
    [Crossref] [PubMed]
  71. M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Proc. 39, 717–725 (2012).
    [Crossref]
  72. M. Kandyla, T. Shih, and E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum,” Phys. Rev. B 75(21), 214107 (2007).
    [Crossref]
  73. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort pulses,” Sov. Phys. JETP 39, 375 (1974).

2015 (6)

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32(1), 150 (2015).
[Crossref]

F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
[Crossref] [PubMed]

K. J. Schrider, B. Torralva, and S. M. Yalisove, “The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface,” Appl. Phys. Lett. 107(12), 124101 (2015).
[Crossref]

X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
[Crossref]

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

R. Shikne and H. Yoneda, “Ultrafast ellipsometric pump-probe diagnostic of liquid metal surface with chirped continuum probe pulses,” Opt. Express 23(16), 20933–20940 (2015).
[Crossref] [PubMed]

2014 (4)

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
[Crossref]

2013 (3)

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

2012 (5)

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express 20(9), 10330–10338 (2012).
[Crossref] [PubMed]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Proc. 39, 717–725 (2012).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

2011 (2)

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

2010 (2)

D. E. Roberts, A. Du Plessis, and L. R. Botha, “Femtosecond laser ablation of silver foil with single and double pulses,” Appl. Surf. Sci. 256(6), 1784–1792 (2010).
[Crossref]

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

2009 (2)

T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
[Crossref]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals. Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

2008 (4)

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

C. Bolme and D. Funk, “Ultrafast dynamic ellipsometry measurements of early time laser ablation of titanium thin films,” Appl. Phys., A Mater. Sci. Process. 92(4), 761–766 (2008).
[Crossref]

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008).
[Crossref] [PubMed]

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

2007 (4)

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15(26), 17855–17862 (2007).
[Crossref] [PubMed]

C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
[Crossref]

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

M. Kandyla, T. Shih, and E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum,” Phys. Rev. B 75(21), 214107 (2007).
[Crossref]

2006 (3)

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

2005 (4)

G. Hennig, K.-H. Selbmann, and A. Brockelt, “Laser engraving in gravure industry,” Proc. SPIE 6157, 61570C (2005).
[Crossref]

C. Y. Chien and M. C. Gupta, “Pulse width effect in ultrafast laser processing of materials,” Appl. Phys., A Mater. Sci. Process. 81(6), 1257–1263 (2005).
[Crossref]

A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
[Crossref]

J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005).
[Crossref] [PubMed]

2004 (2)

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
[Crossref]

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

2003 (2)

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
[Crossref] [PubMed]

2002 (1)

A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
[Crossref]

2000 (3)

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

1999 (1)

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

1997 (4)

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1997).
[Crossref]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

1994 (2)

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

M. Y. Frankel, “Optimization of a femtosecond ellipsometer for gold photoreflectance studies,” Opt. Lett. 19(16), 1252–1254 (1994).
[Crossref] [PubMed]

1987 (1)

G. E. Jellison and D. H. Lowndes, “Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry,” Appl. Phys. Lett. 51(5), 352 (1987).
[Crossref]

1983 (1)

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse- induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

1982 (2)

D. von der Linde, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41(10), 991 (1982).
[Crossref]

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
[Crossref] [PubMed]

1975 (1)

1974 (2)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort pulses,” Sov. Phys. JETP 39, 375 (1974).

D. H. Auston and C. V. Shank, “Picosecond ellipsometry of transient electron-hole plasmas in germanium,” Phys. Rev. Lett. 32(20), 1120–1123 (1974).
[Crossref]

1971 (1)

M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, “Optical properties of molybdenum single crystals,” Sov. Phys. JETP 33, 1210–1214 (1971).

1934 (1)

Abe, K.

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

Achermann, M.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

Acioli, L. H.

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

Alloncle, P.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Ancona, A.

Anisimov, S. I.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort pulses,” Sov. Phys. JETP 39, 375 (1974).

Aspnes, D. E.

Auston, D. H.

D. H. Auston and C. V. Shank, “Picosecond ellipsometry of transient electron-hole plasmas in germanium,” Phys. Rev. Lett. 32(20), 1120–1123 (1974).
[Crossref]

Axente, E.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Bachelier, G.

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Bauer, F.

Baumert, T.

Benfarah, M.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

Bolme, C.

C. Bolme and D. Funk, “Ultrafast dynamic ellipsometry measurements of early time laser ablation of titanium thin films,” Appl. Phys., A Mater. Sci. Process. 92(4), 761–766 (2008).
[Crossref]

Bolme, C. A.

C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
[Crossref]

Bonse, J.

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Boschini, F.

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

Botha, L. R.

D. E. Roberts, A. Du Plessis, and L. R. Botha, “Femtosecond laser ablation of silver foil with single and double pulses,” Appl. Surf. Sci. 256(6), 1784–1792 (2010).
[Crossref]

Brockelt, A.

G. Hennig, K.-H. Selbmann, and A. Brockelt, “Laser engraving in gravure industry,” Proc. SPIE 6157, 61570C (2005).
[Crossref]

Bruneau, S.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Callan, J. P.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Carpene, E.

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Chen, K. P.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1997).
[Crossref]

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

Chien, C. Y.

C. Y. Chien and M. C. Gupta, “Pulse width effect in ultrafast laser processing of materials,” Appl. Phys., A Mater. Sci. Process. 81(6), 1257–1263 (2005).
[Crossref]

Christofilos, D.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

Conrad, U.

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Coustillier, G.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Dallera, C.

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

Del Fatti, N.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

Delaigue, M.

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

Deloison, F.

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

Domke, M.

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Proc. 39, 717–725 (2012).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express 20(9), 10330–10338 (2012).
[Crossref] [PubMed]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Du Plessis, A.

D. E. Roberts, A. Du Plessis, and L. R. Botha, “Femtosecond laser ablation of silver foil with single and double pulses,” Appl. Surf. Sci. 256(6), 1784–1792 (2010).
[Crossref]

Dutouquet, C.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

Englert, L.

Englmaier, M.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Frankel, M. Y.

Fujimoto, J. G.

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

Funk, D.

C. Bolme and D. Funk, “Ultrafast dynamic ellipsometry measurements of early time laser ablation of titanium thin films,” Appl. Phys., A Mater. Sci. Process. 92(4), 761–766 (2008).
[Crossref]

Funk, D. J.

C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
[Crossref]

Galvan-Sosa, M.

Garcia-Lechuga, M.

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32(1), 150 (2015).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
[Crossref]

Glezer, E. N.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Gu, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Guedde, J.

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Guillemoles, J.-F.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Gupta, A.

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

Gupta, M. C.

C. Y. Chien and M. C. Gupta, “Pulse width effect in ultrafast laser processing of materials,” Appl. Phys., A Mater. Sci. Process. 81(6), 1257–1263 (2005).
[Crossref]

Haag, L.

Haloui, H.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

Hedayat, H.

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

Heise, G.

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Hellwig, C.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Hennig, G.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

G. Hennig, K.-H. Selbmann, and A. Brockelt, “Laser engraving in gravure industry,” Proc. SPIE 6157, 61570C (2005).
[Crossref]

Henrich, B.

A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
[Crossref]

Herman, P. R.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

Hermann, J.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Hernandez-Rueda, J.

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32(1), 150 (2015).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
[Crossref]

Herrmann, T.

A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
[Crossref]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse- induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Hohlfeld, J.

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Hönninger, C.

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

Huang, L.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Huber, H.

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Proc. 39, 717–725 (2012).
[Crossref]

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

Huber, H. P.

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express 20(9), 10330–10338 (2012).
[Crossref] [PubMed]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

J. Sotrop, J. Winter, S. Rapp, and H. P. Huber, “Understanding laser ablation efficiency,” SPIE Newsroom (2015).

Hunziker, U.

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

Ippen, E. P.

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

Itina, T.

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Ivanov, D. S.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals. Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

Jacobs, H.

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Jaehnke, V.

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Jellison, G. E.

G. E. Jellison and D. H. Lowndes, “Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry,” Appl. Phys. Lett. 51(5), 352 (1987).
[Crossref]

Kandyla, M.

M. Kandyla, T. Shih, and E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum,” Phys. Rev. B 75(21), 214107 (2007).
[Crossref]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort pulses,” Sov. Phys. JETP 39, 375 (1974).

Kersch, A.

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

Kiedrowski, T.

Kim, A. M.-T.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Kirillova, M. M.

M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, “Optical properties of molybdenum single crystals,” Sov. Phys. JETP 33, 1210–1214 (1971).

Knappe, R.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
[Crossref]

König, J.

Konrad, J.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

Kuznicki, T.

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Lapczyna, M.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Lidolff, A.

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

Limpert, J.

Lin, Z.

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals. Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

Liu, J. M.

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Lopez, J.

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Lowndes, D. H.

G. E. Jellison and D. H. Lowndes, “Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry,” Appl. Phys. Lett. 51(5), 352 (1987).
[Crossref]

Lu, T.-M.

X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
[Crossref]

Mamedov, N.

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

Marjoribanks, R. S.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

Martin, P.-E.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Matthias, E.

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Mazur, E.

T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
[Crossref]

M. Kandyla, T. Shih, and E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum,” Phys. Rev. B 75(21), 214107 (2007).
[Crossref]

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

McGrane, S. D.

C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

Meyer-Ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Michalowski, A.

Momma, C.

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1997).
[Crossref]

Moore, D. S.

C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
[Crossref]

More, R. M.

H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
[Crossref] [PubMed]

Morikami, H.

H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
[Crossref] [PubMed]

Mottay, E.

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Nakata, Y.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Nebel, A.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
[Crossref]

Neuenschwander, B.

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Nolte, S.

Nomerovannaya, L. V.

M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, “Optical properties of molybdenum single crystals,” Sov. Phys. JETP 33, 1210–1214 (1971).

Noskov, M. M.

M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, “Optical properties of molybdenum single crystals,” Sov. Phys. JETP 33, 1210–1214 (1971).

Ogushi, N.

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Perelman, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort pulses,” Sov. Phys. JETP 39, 375 (1974).

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Petite, G.

A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
[Crossref]

Piovera, C.

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

Rademaker, K.

Rapp, S.

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express 20(9), 10330–10338 (2012).
[Crossref] [PubMed]

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Proc. 39, 717–725 (2012).
[Crossref]

J. Sotrop, J. Winter, S. Rapp, and H. P. Huber, “Understanding laser ablation efficiency,” SPIE Newsroom (2015).

Reider, G. A.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

Rethfeld, B.

L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15(26), 17855–17862 (2007).
[Crossref] [PubMed]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
[Crossref]

Roberts, D. E.

D. E. Roberts, A. Du Plessis, and L. R. Botha, “Femtosecond laser ablation of silver foil with single and double pulses,” Appl. Surf. Sci. 256(6), 1784–1792 (2010).
[Crossref]

Roeser, C. A. D.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Rosenberger, J.

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

Röser, F.

Rouffiange, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Ruiz de la Cruz, A.

Salle, B.

A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
[Crossref]

Sarpe-Tudoran, C.

Sarrach, S.

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

Schmid, M.

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Schmidt, M.

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express 20(9), 10330–10338 (2012).
[Crossref] [PubMed]

Schrider, K. J.

K. J. Schrider, B. Torralva, and S. M. Yalisove, “The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface,” Appl. Phys. Lett. 107(12), 124101 (2015).
[Crossref]

Schwaller, P.

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

Seifert, A.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

Selbmann, K.-H.

G. Hennig, K.-H. Selbmann, and A. Brockelt, “Laser engraving in gravure industry,” Proc. SPIE 6157, 61570C (2005).
[Crossref]

Semerok, A.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

Semerok, A. F.

A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
[Crossref]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse- induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

D. H. Auston and C. V. Shank, “Picosecond ellipsometry of transient electron-hole plasmas in germanium,” Phys. Rev. Lett. 32(20), 1120–1123 (1974).
[Crossref]

Shen, X.

X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
[Crossref]

Shih, T.

T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
[Crossref]

M. Kandyla, T. Shih, and E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum,” Phys. Rev. B 75(21), 214107 (2007).
[Crossref]

Shikne, R.

Shim, Y.

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Siegal, Y.

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Siegel, J.

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32(1), 150 (2015).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

Solis, J.

J. Hernandez-Rueda, J. Siegel, M. Galvan-Sosa, A. Ruiz de la Cruz, M. Garcia-Lechuga, and J. Solis, “Controlling ablation mechanisms in sapphire by tuning the temporal shape of femtosecond laser pulses,” J. Opt. Soc. Am. B 32(1), 150 (2015).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Sotrop, J.

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

J. Sotrop, J. Winter, S. Rapp, and H. P. Huber, “Understanding laser ablation efficiency,” SPIE Newsroom (2015).

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Studna, A. A.

Sturm, H.

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

Summers, R. D.

Sun, C.

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

Tan, H. W.

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

Timalsina, Y. P.

X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
[Crossref]

Torralva, B.

K. J. Schrider, B. Torralva, and S. M. Yalisove, “The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface,” Appl. Phys. Lett. 107(12), 124101 (2015).
[Crossref]

Tünnermann, A.

Tzortzakis, S.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

Ueda, K.

H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
[Crossref] [PubMed]

Vallée, F.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

Voisin, C.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1997).
[Crossref]

Von Der Linde, D.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

D. von der Linde, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41(10), 991 (1982).
[Crossref]

Voss, T.

T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
[Crossref]

Wagner, J.-F.

A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
[Crossref]

Wakita, K.

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

Weis, A.

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

Wellegehausen, B.

Wellershoff, S.-S.

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

Welling, H.

Winkler, M. T.

T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
[Crossref]

Winter, J.

J. Sotrop, J. Winter, S. Rapp, and H. P. Huber, “Understanding laser ablation efficiency,” SPIE Newsroom (2015).

Wollenhaupt, M.

Wu, C.

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Xu, X.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

Yalisove, S. M.

K. J. Schrider, B. Torralva, and S. M. Yalisove, “The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface,” Appl. Phys. Lett. 107(12), 124101 (2015).
[Crossref]

Yamaguchi, M.

X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
[Crossref]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse- induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Yoneda, H.

R. Shikne and H. Yoneda, “Ultrafast ellipsometric pump-probe diagnostic of liquid metal surface with chirped continuum probe pulses,” Opt. Express 23(16), 20933–20940 (2015).
[Crossref] [PubMed]

H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
[Crossref] [PubMed]

Zehnder, S.

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

Zhigilei, L. V.

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals. Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

Zoppel, S.

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

Zürcher, J.

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. von der Linde, “Observation of an electronic plasma in picosecond laser annealing of silicon,” Appl. Phys. Lett. 41(10), 991 (1982).
[Crossref]

G. E. Jellison and D. H. Lowndes, “Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry,” Appl. Phys. Lett. 51(5), 352 (1987).
[Crossref]

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Femtosecond laser ablation of dielectric materials in the optical breakdown regime: Expansion of a transparent shell,” Appl. Phys. Lett. 105(11), 112902 (2014).
[Crossref]

K. J. Schrider, B. Torralva, and S. M. Yalisove, “The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface,” Appl. Phys. Lett. 107(12), 124101 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (11)

M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), S883–S886 (1999).
[Crossref]

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 767–769 (2004).
[Crossref]

J. Sotrop, A. Kersch, M. Domke, G. Heise, and H. P. Huber, “Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 113(2), 397–411 (2013).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1997).
[Crossref]

C. Y. Chien and M. C. Gupta, “Pulse width effect in ultrafast laser processing of materials,” Appl. Phys., A Mater. Sci. Process. 81(6), 1257–1263 (2005).
[Crossref]

T. Shih, M. T. Winkler, T. Voss, and E. Mazur, “Dielectric function dynamics during femtosecond laser excitation of bulk ZnO,” Appl. Phys., A Mater. Sci. Process. 96(2), 363–367 (2009).
[Crossref]

C. Bolme and D. Funk, “Ultrafast dynamic ellipsometry measurements of early time laser ablation of titanium thin films,” Appl. Phys., A Mater. Sci. Process. 92(4), 761–766 (2008).
[Crossref]

G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, and H. P. Huber, “Laser ablation of thin molybdenum films on transparent substrates at low fluences,” Appl. Phys., A Mater. Sci. Process. 102(1), 173–178 (2011).
[Crossref]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultra-fast movies of thin-film laser ablation,” Appl. Phys., A Mater. Sci. Process. 109(2), 409–420 (2012).
[Crossref]

S. Zoppel, H. Huber, and G. A. Reider, “Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells,” Appl. Phys., A Mater. Sci. Process. 89(1), 161–163 (2007).
[Crossref]

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Appl. Surf. Sci. (5)

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368–372 (2014).
[Crossref]

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109–110, 1–10 (1997).
[Crossref]

S. Rapp, J. Rosenberger, M. Domke, G. Heise, H. P. Huber, and M. Schmidt, “Ultrafast pump-probe microscopy reveals the mechanism of selective fs laser structuring of transparent thin films for maskless micropatterning,” Appl. Surf. Sci. 290, 368-372 (2013).

D. E. Roberts, A. Du Plessis, and L. R. Botha, “Femtosecond laser ablation of silver foil with single and double pulses,” Appl. Surf. Sci. 256(6), 1784–1792 (2010).
[Crossref]

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci. 154–155, 1–10 (2000).
[Crossref]

Chem. Phys. (1)

J. Hohlfeld, S.-S. Wellershoff, J. Guedde, U. Conrad, V. Jaehnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251(1-3), 237–258 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

J. Appl. Phys. (3)

M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, and J. Solis, “Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses,” J. Appl. Phys. 116(11), 113502 (2014).
[Crossref]

C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102(3), 033513 (2007).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, J. Solis, and H. Sturm, “Time- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphide,” J. Appl. Phys. 103(5), 054910 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals. Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113(27), 11892–11906 (2009).
[Crossref]

J. Phys. D (2)

G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, “Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses,” J. Phys. D 45, 315303 (2012).

J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, and P. Alloncle, “Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers,” J. Phys. D 39(3), 453–460 (2006).
[Crossref]

Laser Part. Beams (1)

A. F. Semerok, B. Salle, J.-F. Wagner, and G. Petite, “Femtosecond, picosecond, and nanosecond laser microablation: laser plasma and crater investigation,” Laser Part. Beams 20, 62–72 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Proc. (1)

M. Domke, S. Rapp, and H. Huber, “Ultra-fast movies resolve ultra-short pulse laser ablation and bump formation on thin molybdenum films,” Phys. Proc. 39, 717–725 (2012).
[Crossref]

Phys. Rev. B (5)

M. Kandyla, T. Shih, and E. Mazur, “Femtosecond dynamics of the laser-induced solid-to-liquid phase transition in aluminum,” Phys. Rev. B 75(21), 214107 (2007).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

X. Shen, Y. P. Timalsina, T.-M. Lu, and M. Yamaguchi, “Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films,” Phys. Rev. B 91(4), 045129 (2015).
[Crossref]

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61(24), 16956–16966 (2000).
[Crossref]

Phys. Rev. B Condens. Matter (1)

C. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. Von Der Linde, A. Oparin, J. Meyer-Ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse- induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

D. H. Auston and C. V. Shank, “Picosecond ellipsometry of transient electron-hole plasmas in germanium,” Phys. Rev. Lett. 32(20), 1120–1123 (1974).
[Crossref]

H. Yoneda, H. Morikami, K. Ueda, and R. M. More, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91(7), 075004 (2003).
[Crossref] [PubMed]

Proc. SPIE (6)

M. Schmid, S. Zehnder, P. Schwaller, B. Neuenschwander, J. Zürcher, and U. Hunziker, “Measuring the complex refractive index of metals in the solid and liquid state and its influence on the laser machining,” Proc. SPIE 8607, 86071I (2013).
[Crossref]

J. Lopez, F. Deloison, A. Lidolff, M. Delaigue, C. Hönninger, and E. Mottay, “Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors,” Proc. SPIE 8243, 82430O (2011).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.-E. Martin, G. Hennig, X. Xu, B. Gu, and Y. Nakata, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012).
[Crossref]

G. Hennig, K.-H. Selbmann, and A. Brockelt, “Laser engraving in gravure industry,” Proc. SPIE 6157, 61570C (2005).
[Crossref]

R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE 7585, 75850H (2010).
[Crossref]

A. Nebel, T. Herrmann, B. Henrich, and R. Knappe, “Fast micromachining using picosecond lasers,” Proc. SPIE 5706, 87–98 (2005).
[Crossref]

Rev. Sci. Instrum. (2)

F. Boschini, H. Hedayat, C. Piovera, C. Dallera, A. Gupta, and E. Carpene, “A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics,” Rev. Sci. Instrum. 86(1), 013909 (2015).
[Crossref] [PubMed]

C. A. D. Roeser, A. M.-T. Kim, J. P. Callan, L. Huang, E. N. Glezer, Y. Siegal, and E. Mazur, “Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry,” Rev. Sci. Instrum. 74(7), 3413 (2003).
[Crossref]

Sov. Phys. JETP (2)

M. M. Kirillova, L. V. Nomerovannaya, and M. M. Noskov, “Optical properties of molybdenum single crystals,” Sov. Phys. JETP 33, 1210–1214 (1971).

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort pulses,” Sov. Phys. JETP 39, 375 (1974).

Thin Solid Films (2)

N. Mamedov, K. Wakita, Y. Shim, K. Abe, and N. Ogushi, “Temperature-dependent and pump-probe ellipsometric studies of TlInSe2,” Thin Solid Films 517(4), 1434–1438 (2008).
[Crossref]

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

Other (8)

J. Sotrop, J. Winter, S. Rapp, and H. P. Huber, “Understanding laser ablation efficiency,” SPIE Newsroom (2015).

G. A. Mourou, D. Du, S. K. Dutta, V. Elner, R. Kurtz, P. R. Lichter, X. Liu, P. P. Pronko, and J. A. Squier, “Method for controlling configuration of laser induced breakdown and ablation,” United States Patent US5656186A (1997).

R. P. Feynman, R. B. Leighton, and M. Sands, Lectures on Physics (Addison-Wesley Publishing Company, 1964).

P. R. Herman, R. Marjoribanks, and A. Oettl, “Burst-ultrafast laser machining method,” United States Patent US6552301 B2 (2003).

R. Iffländer, Solid-State Lasers for Materials Processing (Springer, 2001).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1997).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley and Sons, 2007).

R. M. A. Azzam and N. M. Bashra, Ellipsometry and Polarized Light (North-Holland Publishing Company, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Semi logarithmic plot of the squared ablation diameter D2 over the applied pulse peak fluence F0 for the determination of the ablation threshold fluence Fthr of molybdenum for infrared (λIR = 1056 nm) and green green = 528 nm) pulses. The fitting function is shown in the inlay. Microscopic images show the material modification at fluences under (≈0.3 J/cm2) respectively above (≈0.8 J/cm2) the ablation threshold fluence.

Fig. 2
Fig. 2

Pump-probe ellipsometry (PPE) setup: laser pulses (τ = 680 fs, λ = 1056 nm) are divided into pump and probe pulses. The pump pulse adjustable in wavelength (λIR = 1056 nm or λgreen = 528 nm) is focused at the sample and initiates the reaction. The probe pulse is frequency doubled (SHG) for illumination. It is coupled in the ellipsometric branch of the setup (incident angle θ = 70°). The polarization of the probe beam on the sample is adjusted by the polarizer (φ = 45°); the polarization of the reflected probe light is analyzed by the analyzer. The locally distributed reflected intensity is detected by a CCD-camera. To temporally delay the pump against the probe pulse a delay line (Δt ≤ 300 ps) is used.

Fig. 3
Fig. 3

Data post processing procedure for PPE measurements: 1. Step: a background image (b) recorded without probe pulse is subtracted from the raw PPE image (a) to eliminate background signals – image (c) is obtained; 2. Step: illumination fluctuations are compensated by calculating the mean gray scale values (MGSV) of an unprocessed area on the PPE image (blue area image (c), with an exemplary MGSV of 23493) and the MGSV of the corresponding area on an averaged reference image without pump pulse (blue area image (d), with an exemplary MGSV of 23285). The PPE image (c) is normalized by multiplying it with the quotient of the two MGSV – the final image (e) is obtained. For further transient ellipsometric analyses an area of 12x4 pixels in the center of the laser irradiated spot is chosen (green rectangle in image (f)).

Fig. 4
Fig. 4

Ellipsometric angles ψ and Δ determined by the PPE setup in steady-state-measurement-mode (without pump-pulse) (“experiment”, blue bar), by the commercial ellipsometer Ocean Optics “SpecEl-2000” (“commercial elli.”, light blue bar) and taken from literature [48,49,63] (“calculated/literature”, gray bar) are compared for showing the accuracy of the built setup. SiO2 films with different thicknesses on a Si substrate as well as a Mo sample were investigated. All values (experimental/commercial elli./literature) were obtained by measurements at λ = 528 nm.

Fig. 5
Fig. 5

Data acquisition for a pump-probe ellipsometric measurement. Images show a Mo sample irradiated by a F0 = 0.8 J/cm2, τ = 680 fs, λIR = 1056 nm pump pulse and a τ = 540 fs, λ = 528 nm probe pulse. In the first row, the delay time Δt is varied at a fixed analyzer angle ϕ = 0°. The second row shows images at a fixed delay time of Δt = 80 ps for different analyzer angles. The defocused spot at the bottom of every image results from previous measurements where different delay times or analyzer angles were investigated.

Fig. 6
Fig. 6

Transmitted intensity to the CCD detector in dependency on the analyzer angle ϕ for different delay times (−10 ps to 80 ps). Data are obtained by evaluating the reflected light by a Mo sample irradiated by a F0 = 0.8 J/cm2, τ = 680 fs, λIR = 1056 nm pump pulse and a τ = 540 fs, λ = 528 nm probe pulse. For reasons of a clearer visualization, 18 analyzer positions are plotted whereas actual measurements are performed with only 5 analyzer positions.

Fig. 7
Fig. 7

Ellipsometric angles Psi ψ and Delta Δ in dependency on the delay time Δt. Data were obtained by evaluating the reflected light from a Mo film sample irradiated by a F0 = 0.8 J/cm2, τ = 680 fs, λIR = 1056 nm pump pulse and a τ = 540 fs, λ = 528 nm probe pulse.

Fig. 8
Fig. 8

Transient complex refractive index N = n-ik of laser irradiated Mo. The Mo sample is irradiated either by an infrared (τIR = 680 fs, λIR = 1056 nm) or a green (τgreen = 540 fs, λgreen = 528 nm) pump pulse. Left: applied fluence F0 < Fthr (infrared: F0 = 0.3 J/cm2; green: F0 = 0.29 J/cm2); Right: applied fluence F0 > Fthr (infrared: F0 = 0.8 J/cm2; green: F0 = 0.85 J/cm2). Probe pulse parameters are τ = 540 fs, λ = 528 nm. Reference values (“reference”) obtained by an Ocean Optics “SpecEl-2000” ellipsometer are indicated to the left of the transients (n reference = 2.9 (purple triangle); k reference = 3.6 (turquois circle)); values of the final state after about 3 s (“final”) to the right (n final = 3.0 (green rectangle); k final = 3.3 (blue triangle)). The gray shaded area marks the delay time region where a phase explosion should occur. Under this condition, calculating the complex refractive index by Eq. (8) may not be valid. Values in the shaded area have to be considered under reserve.

Fig. 9
Fig. 9

Relative reflective change ΔR/R in laser irradiated Mo. Comparison of data obtained by pump-probe ellipsometry (PPE) and conventional pump-probe microscopy (PPM). The Mo sample is irradiated by a τ = 680 fs, λIR = 1056 nm pump pulse at F0 = 0.3 J/cm2 (PPE: black rectangles; PPM: green rectangles) respectively F0 = 0.8 J/cm2 (PPE: red triangles; PPM: blue triangles). Probe pulse parameters are τ = 540 fs, λ = 528 nm.

Fig. 10
Fig. 10

Transient optical penetration depth d in laser irradiated Mo. The Mo sample is irradiated either by an infrared (τIR = 680 fs, λIR = 1056 nm) or a green (τgreen = 540 fs, λgreen = 528 nm) pump pulse; applied fluences for F0 < Fthr are: F0 = 0.3 J/cm2 (infrared) and F0 = 0.29 J/cm2 (green); applied fluences for F0 > Fthr are: F0 = 0.8 J/cm2 (infrared) and F0 = 0.85 J/cm2 (green). Probe pulse parameters: τ = 540 fs, λ = 528 nm. Literature values [48,49] for d at λ = 528 nm are indicated as red circle. The gray shaded area marks the time interval where a gas-liquid-mixture is created or a phase explosion should occur (section 3.1). Under this condition, calculating N by Eq. (8) may not be valid. Values in the shaded area have to be considered under reserve.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D²=2 w 0 ²ln( F 0 F thr )
I= I 0 [1+αcos(2ϕ)+βsin(2ϕ)]
ψ=arctan( 1+α 1α tan(| φ |) )
Δ=arccos( β 1α² )
tanψ= | r p | | r s |
Δ= δ rp δ rs
ρ=tanψexp(iΔ)= r p r s
N 1 = N 0 sin(θ) 1+ ( 1ρ 1+ρ ) 2 tan²(θ)
R= ( n1 )²+k² ( n+1 )²+k²
d= 1 α abs = λ 4πk

Metrics