Abstract

Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 136 dB dynamic range capability for a simultaneous dual optical band CAOS camera

Nabeel A. Riza and J. Pablo La Torre
Opt. Express 24(26) 29427-29443 (2016)

Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging

Wei Feng, Fumin Zhang, Weijing Wang, Wei Xing, and Xinghua Qu
Appl. Opt. 56(13) 3831-3840 (2017)

Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera

Alexandre Serov, Beda Steinacher, and Theo Lasser
Opt. Express 13(10) 3681-3689 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Point Grey White Paper Series, “Sony Pregius Global Shutter CMOS Imaging Performance,” (Point Grey Research, 2015).
  2. M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
    [Crossref]
  3. S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.
  4. S. Sumriddetchkajorn and N. A. Riza, “Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41(18), 3506–3510 (2002).
    [Crossref] [PubMed]
  5. N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
    [Crossref]
  6. N. A. Riza and F. N. Ghauri, “Super Resolution Hybrid Analog-Digital Optical Beam Profiler Using Digital Micromirror Device,” IEEE Photonics Technol. Lett. 17(7), 1492–1494 (2005).
    [Crossref]
  7. M. Gentili and N. A. Riza, “Wide-Aperture No-Moving-Parts Optical Beam Profiler Using Liquid-Crystal Displays,” Appl. Opt. 46(4), 506–512 (2007).
    [Crossref] [PubMed]
  8. M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
    [Crossref]
  9. N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
    [Crossref]
  10. N. A. Riza, P. J. Marraccini, and C. Baxley, “Data Efficient Digital Micromirror Device-Based Image Edge Detection Sensor using Space-Time Processing,” IEEE Sens. J. 12(5), 1043–1047 (2012).
  11. M. J. Amin, J. P. La Torre, and N. A. Riza, “Embedded Optics and Electronics Single Digital Micromirror Device-based Agile Pixel Broadband Imager and Spectrum Analyser for Laser Beam Hotspot Detection,” Appl. Opt. 54(12), 3547–3559 (2015).
    [Crossref]
  12. S. Selivanov, V. N. Govorov, A. S. Titov, and V. P. Chemodanov, “Lunar Station Television Camera,” (Reilly Translations): NASA CR-97884 (1968).
  13. F. O. Huck and J. J. Lambiotte, “A Performance Analysis of the Optical-Mechanical Scanner as an Imaging System for Planetary Landers,” NASA TN D-5552 (1969).
  14. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
    [Crossref]
  15. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  16. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  17. M. J. E. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Am. 39(6), 437–444 (1949).
    [Crossref] [PubMed]
  18. P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” EEE Trans. Inform. Theory 14(3), 428–433 (1968).
    [Crossref]
  19. E. E. Fenimore, “Coded aperture imaging: predicted performance of uniformly redundant arrays,” Appl. Opt. 17(22), 3562–3570 (1978).
    [Crossref] [PubMed]
  20. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41(29), 6080–6092 (2002).
    [Crossref] [PubMed]
  21. N. A. Riza and M. A. Arain, “Code-multiplexed optical scanner,” Appl. Opt. 42(8), 1493–1502 (2003).
    [Crossref] [PubMed]
  22. K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
    [Crossref]
  23. J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
    [Crossref]
  24. S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proceedings of IEEE on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 436–443.
  25. N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc.:Rapid Publ.10(15021), (2015).
    [Crossref]
  26. N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).
  27. N. A. Riza, “Compressive optical display and imager,” US Patent 8783874 B1 (2014).
  28. T. Scheimpflug, “Improved Method and Apparatus for the Systematic Alteration or Distortion of Plane Pictures and Images by Means of Lenses and Mirrors for Photography and for other purposes,” GB Patent No. 1196 (1904).
  29. K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
    [Crossref]
  30. Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
    [PubMed]
  31. UI-1250SE-M-GL detailed datasheet, IDS, Germany.
  32. D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World 46(6), 45 (2010).
  33. PDA36A datasheet, Thorlabs, (2015).
  34. Photodetector technical documents, Thorlabs, Germany.
  35. V. Mackowiak, J. Peuplelmann, Y. Ma, and A. Gorges, “NEP-Noise Equivalent Power”, White Paper, Thorlabs.
  36. J. Arrillega, D. A. Bradley, and P. S. Bodger, Power System Harmonics, (John Wiley and Sons, 1985).
  37. DLP7000 DLP 0.7 XGA datasheet, Texas Instruments, USA (2015).
  38. S. P. Kim and M. J. Kim, “A constant amplitude coding for code select CDMA system,” in Proceedings of IEEE TENCON Conference on Computers, Communications, Control and Power Engineering, (IEEE, 2002), pp. 1035–1038.
    [Crossref]
  39. ADC ADS52J90, Texas Instruments, USA.

2016 (1)

N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).

2015 (1)

2014 (1)

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

2012 (2)

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

N. A. Riza, P. J. Marraccini, and C. Baxley, “Data Efficient Digital Micromirror Device-Based Image Edge Detection Sensor using Space-Time Processing,” IEEE Sens. J. 12(5), 1043–1047 (2012).

2011 (1)

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

2010 (1)

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World 46(6), 45 (2010).

2009 (2)

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2007 (1)

2006 (1)

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

2005 (1)

N. A. Riza and F. N. Ghauri, “Super Resolution Hybrid Analog-Digital Optical Beam Profiler Using Digital Micromirror Device,” IEEE Photonics Technol. Lett. 17(7), 1492–1494 (2005).
[Crossref]

2004 (1)

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

2003 (1)

2002 (2)

1999 (1)

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

1998 (1)

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

1978 (1)

1968 (1)

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” EEE Trans. Inform. Theory 14(3), 428–433 (1968).
[Crossref]

1949 (1)

Amin, M. J.

Arain, M. A.

Baraniuk, R. G.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Basset, C.

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World 46(6), 45 (2010).

Baxley, C.

N. A. Riza, P. J. Marraccini, and C. Baxley, “Data Efficient Digital Micromirror Device-Based Image Edge Detection Sensor using Space-Time Processing,” IEEE Sens. J. 12(5), 1043–1047 (2012).

Blerkom, D. V.

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World 46(6), 45 (2010).

Boult, T.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proceedings of IEEE on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 436–443.

Branzoi, V.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proceedings of IEEE on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 436–443.

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Brooke, M.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Brown, A.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Castracane, J.

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

Cathey, W. T.

Doolittle, W. A.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Dowski, E. R.

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Fenimore, E. E.

Fike, S.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Fukumoto, K.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Gentili, M.

Ghauri, F. N.

N. A. Riza and F. N. Ghauri, “Super Resolution Hybrid Analog-Digital Optical Beam Profiler Using Digital Micromirror Device,” IEEE Photonics Technol. Lett. 17(7), 1492–1494 (2005).
[Crossref]

Golay, M. J. E.

Gottlieb, P.

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” EEE Trans. Inform. Theory 14(3), 428–433 (1968).
[Crossref]

Gutin, M.

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

Haruta, T.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Hirota, I.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Huang, S.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Iida, T.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Inoue, K.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Isobe, K.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Itoh, S.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Jokerst, N.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Joo, Y.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Kasai, M.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Kawahito, S.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Kawanobe, H.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Kearney, K.

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Kelly, K. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Kim, M. J.

S. P. Kim and M. J. Kim, “A constant amplitude coding for code select CDMA system,” in Proceedings of IEEE TENCON Conference on Computers, Communications, Control and Power Engineering, (IEEE, 2002), pp. 1035–1038.
[Crossref]

Kim, S. P.

S. P. Kim and M. J. Kim, “A constant amplitude coding for code select CDMA system,” in Proceedings of IEEE TENCON Conference on Computers, Communications, Control and Power Engineering, (IEEE, 2002), pp. 1035–1038.
[Crossref]

Kim, Y.

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

Koseki, K.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

La Torre, J. P.

Lai, T.-H.

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Lee, J. W.

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

Lee, K.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Manders, J. R.

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

Marraccini, P. J.

N. A. Riza, P. J. Marraccini, and C. Baxley, “Data Efficient Digital Micromirror Device-Based Image Edge Detection Sensor using Space-Time Processing,” IEEE Sens. J. 12(5), 1043–1047 (2012).

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

Mughal, M. J.

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

Nakajima, T.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Nayar, S.

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proceedings of IEEE on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 436–443.

Ninkov, Z.

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

Reza, S. A.

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

Riza, N. A.

N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).

M. J. Amin, J. P. La Torre, and N. A. Riza, “Embedded Optics and Electronics Single Digital Micromirror Device-based Agile Pixel Broadband Imager and Spectrum Analyser for Laser Beam Hotspot Detection,” Appl. Opt. 54(12), 3547–3559 (2015).
[Crossref]

N. A. Riza, P. J. Marraccini, and C. Baxley, “Data Efficient Digital Micromirror Device-Based Image Edge Detection Sensor using Space-Time Processing,” IEEE Sens. J. 12(5), 1043–1047 (2012).

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

M. Gentili and N. A. Riza, “Wide-Aperture No-Moving-Parts Optical Beam Profiler Using Liquid-Crystal Displays,” Appl. Opt. 46(4), 506–512 (2007).
[Crossref] [PubMed]

N. A. Riza and F. N. Ghauri, “Super Resolution Hybrid Analog-Digital Optical Beam Profiler Using Digital Micromirror Device,” IEEE Photonics Technol. Lett. 17(7), 1492–1494 (2005).
[Crossref]

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

N. A. Riza and M. A. Arain, “Code-multiplexed optical scanner,” Appl. Opt. 42(8), 1493–1502 (2003).
[Crossref] [PubMed]

S. Sumriddetchkajorn and N. A. Riza, “Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41(18), 3506–3510 (2002).
[Crossref] [PubMed]

N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc.:Rapid Publ.10(15021), (2015).
[Crossref]

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Seo, M.-W.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Seo, S.

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Sheikh, M.

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

So, F.

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

Suh, S.-H.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Sukegawa, S.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Sumriddetchkajorn, S.

Takasawa, T.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Takhar, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Umebayashi, T.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Wakano, T.

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Watanabe, T.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Yassine, R.

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World 46(6), 45 (2010).

Yasutomi, K.

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

EEE Trans. Inform. Theory (1)

P. Gottlieb, “A television scanning scheme for a detector-noise limited system,” EEE Trans. Inform. Theory 14(3), 428–433 (1968).
[Crossref]

IEEE J. Solid-State Circuits (1)

M.-W. Seo, S.-H. Suh, T. Iida, T. Takasawa, K. Isobe, T. Watanabe, S. Itoh, K. Yasutomi, and S. Kawahito, “A low-noise high intrascene dynamic range CMOS image sensor with a 13 to 19b variable-resolution column-parallel folding-integration/cyclic ADC,” IEEE J. Solid-State Circuits 47(1), 272–283 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

N. A. Riza and F. N. Ghauri, “Super Resolution Hybrid Analog-Digital Optical Beam Profiler Using Digital Micromirror Device,” IEEE Photonics Technol. Lett. 17(7), 1492–1494 (2005).
[Crossref]

IEEE Sens. J. (1)

N. A. Riza, P. J. Marraccini, and C. Baxley, “Data Efficient Digital Micromirror Device-Based Image Edge Detection Sensor using Space-Time Processing,” IEEE Sens. J. 12(5), 1043–1047 (2012).

J. Opt. Soc. Am. (1)

Laser Focus World (1)

D. V. Blerkom, C. Basset, and R. Yassine, “CMOS DETECTORS: New techniques recover dynamic range as CMOS pixels shrink,” Laser Focus World 46(6), 45 (2010).

Opt. Commun. (1)

N. A. Riza, S. A. Reza, and P. J. Marraccini, “Digital micro-mirror device-based broadband optical image sensor for robust imaging applications,” Opt. Commun. 284(1), 103–111 (2011).
[Crossref]

Opt. Eng. (1)

N. A. Riza and M. J. Mughal, “Optical Power Independent Optical Beam Profiler,” Opt. Eng. 43(4), 793–797 (2004).
[Crossref]

Phys. Rev. A (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Proc. SPIE (4)

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-Domain Compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

K. Kearney and Z. Ninkov, “Characterization of a digital micro-mirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81–92 (1998).
[Crossref]

J. Castracane and M. Gutin, “DMD-based bloom control for intensified imaging systems,” Proc. SPIE 3633, 234–242 (1999).
[Crossref]

N. A. Riza, “Coded Access Optical Sensor (CAOS) imager and applications,” Proc. SPIE 9896, 98960A (2016).

Sci. Rep. (1)

Y. Kim, T.-H. Lai, J. W. Lee, J. R. Manders, and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep. 4(5946), 5946 (2014).
[PubMed]

Other (17)

UI-1250SE-M-GL detailed datasheet, IDS, Germany.

N. A. Riza, “Compressive optical display and imager,” US Patent 8783874 B1 (2014).

T. Scheimpflug, “Improved Method and Apparatus for the Systematic Alteration or Distortion of Plane Pictures and Images by Means of Lenses and Mirrors for Photography and for other purposes,” GB Patent No. 1196 (1904).

K. Lee, S. Seo, S. Huang, Y. Joo, W. A. Doolittle, S. Fike, N. Jokerst, M. Brooke, and A. Brown, “Design of a Smart Pixel Multispectral Imaging Array Using 3D Stacked Thin Film Detectors on Si CMOS Circuits,” in Proceedings of IEEE Conference on Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks (IEEE, 2000), pp. 157–158.
[Crossref]

S. Nayar, V. Branzoi, and T. Boult, “Programmable imaging using a digital micro-mirror array,” in Proceedings of IEEE on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 436–443.

N. A. Riza, M. J. Amin, and J. P. La Torre, “Coded Access Optical Sensor (CAOS) Imager,” J. Eur. Opt. Soc.:Rapid Publ.10(15021), (2015).
[Crossref]

PDA36A datasheet, Thorlabs, (2015).

Photodetector technical documents, Thorlabs, Germany.

V. Mackowiak, J. Peuplelmann, Y. Ma, and A. Gorges, “NEP-Noise Equivalent Power”, White Paper, Thorlabs.

J. Arrillega, D. A. Bradley, and P. S. Bodger, Power System Harmonics, (John Wiley and Sons, 1985).

DLP7000 DLP 0.7 XGA datasheet, Texas Instruments, USA (2015).

S. P. Kim and M. J. Kim, “A constant amplitude coding for code select CDMA system,” in Proceedings of IEEE TENCON Conference on Computers, Communications, Control and Power Engineering, (IEEE, 2002), pp. 1035–1038.
[Crossref]

ADC ADS52J90, Texas Instruments, USA.

S. Selivanov, V. N. Govorov, A. S. Titov, and V. P. Chemodanov, “Lunar Station Television Camera,” (Reilly Translations): NASA CR-97884 (1968).

F. O. Huck and J. J. Lambiotte, “A Performance Analysis of the Optical-Mechanical Scanner as an Imaging System for Planetary Landers,” NASA TN D-5552 (1969).

S. Sukegawa, T. Umebayashi, T. Nakajima, H. Kawanobe, K. Koseki, I. Hirota, T. Haruta, M. Kasai, K. Fukumoto, T. Wakano, and K. Inoue, “A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor,” in Proceedings of IEEE Conference on Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, 2013), pp. 484–485.

Point Grey White Paper Series, “Sony Pregius Global Shutter CMOS Imaging Performance,” (Point Grey Research, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The CAOS-CMOS Camera design.

Fig. 2
Fig. 2

Snapshot of the CAOS-CMOS camera experimentally setup in the laboratory.

Fig. 3
Fig. 3

Field of View of the target scene as viewed from the CAOS-CMOS camera in the experimental demonstration.

Fig. 4
Fig. 4

Images of the scene viewed using the CMOS mode of the CAOS-CMOS camera. (a) Unsaturated scene with a torch off, (b) saturated scene due to torch lighting, (c) scene of (b) attenuated by a factor of 1,000, (d) scene of (b) attenuated by a factor of 3,200, (e) scene of (b) attenuated by a factor of 10,000, and (f) logarithmic scale image of the irradiance data from image (e).

Fig. 5
Fig. 5

2-D image reconstruction of the target scene using the CAOS mode of the CAOS-CMOS camera. (a) scaled irradiance map I(x,y) is shown, (b) scaled irradiance map of the logarithm of I(x,y) values is shown, and (c) same plot as in (b) but with additional labels of regions R1, R2, R3 and R4 as well as location of traces T1, T2 and T3 used for quantitative image analysis purposes.

Fig. 6
Fig. 6

The frequency domain plots of chosen CAOS acquired signals at regions (a) R1 covering a segment of the torch, (b) R2 covering the filament, (c) R3 covering the traffic sign, and (d) R4 covering the black background. Note that only |S(f)| peaks at frequencies f1 = 133.4 and f2 = 200.2 indicate the scaled relative optical irradiance at the corresponding agile pixels. The peak at 150 Hz appearing in each plot is due to the 3rd harmonic of the 50 Hz electricity mains supply.

Fig. 7
Fig. 7

Plots showing the measured scaled irradiances along Fig. 5(c) labeled traces (a) T1, (b) T2, and (c) T3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i(t)=K n=1 N c n (t) I n ( x n , y n ) .
i A (t)=G A i(t).
S(f)=FT{ i A (t) }=FT{ G A K n=1 N c n (t) I n ( x n , y n ) }, S(f)=FT{ G A K n=1 N cos(2π f n t) I n ( x n , y n ) }.
S(f)=G G A K n=1 N I n ( x n , y n ) δ(f f n ), S(f)=G G A K{ I 1 ( x 1 , y 1 )δ(f f 1 )+ I 2 ( x 2 , y 2 )δ(f f 2 )+....+ I N ( x N , y N )δ(f f N ) }.

Metrics