Abstract

A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index

Bing-Hong Liu, Yong-Xiang Jiang, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi
Opt. Express 21(26) 32349-32357 (2013)

Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications

Dora Juan Juan Hu and Ho Pui Ho
Adv. Opt. Photon. 9(2) 257-314 (2017)

Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements

Mengdi Lu, Wei Peng, Qiang Liu, Yun Liu, Lixia Li, Yuzhang Liang, and Jean-Francois Masson
Opt. Express 25(8) 8563-8570 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
    [Crossref] [PubMed]
  2. H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
    [Crossref] [PubMed]
  3. S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
    [Crossref] [PubMed]
  4. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34(6), 749–751 (2009).
    [Crossref] [PubMed]
  5. S. Isaacs and I. Abdulhalim, “Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach,” Appl. Phys. Lett. 106(19), 571–606 (2015).
    [Crossref]
  6. L. L. Kegel, D. Boyne, and K. S. Booksh, “Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms,” Anal. Chem. 86(7), 3355–3364 (2014).
    [Crossref] [PubMed]
  7. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
    [Crossref]
  8. Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
    [Crossref] [PubMed]
  9. M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
    [Crossref]
  10. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
    [Crossref] [PubMed]
  11. L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
    [Crossref]
  12. Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202(4), 557–567 (2014).
    [Crossref]
  13. G. Nemova and R. Kashyap, “Modeling of plasmon-polariton refractive-index hollow core fiber sensors assisted by a fiber brag grating,” J. Lightwave Technol. 24(10), 3789–3796 (2006).
    [Crossref]
  14. X. X. Liu, Y. Liu, Q. Liu, X. T. Gao, and W. Peng, “Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing,” Opt. Commun. 356, 212–217 (2015).
    [Crossref]
  15. J. Y. Lee, S. K. Byeon, and M. H. Moon, “Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry,” Anal. Chem. 87(2), 1266–1273 (2015).
    [Crossref] [PubMed]
  16. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
    [Crossref] [PubMed]
  17. Y. Liu, S. Chen, Q. Liu, and W. Peng, “Micro-capillary-based evanescent field biosensor for sensitive, label-free DNA detection,” Opt. Express 23(16), 20686–20695 (2015).
    [Crossref] [PubMed]
  18. J. Alogorri, B. G. Camara, A. G. Garcia, and V. Urruchi, “Fiber optic temperature sensor based on amplitude modulation of metallic and semiconductor nanoparticles in a liquid crystal mixture,” J. Lightwave Technol. 33(12), 2451–2455 (2015).
    [Crossref]
  19. G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
    [Crossref]
  20. D. Ahmadian, C. Ghobadi, and J. Nourinia, “Tunable plasmonic sensor with metal–liquid crystal–metal structure,” IEEE Photonics J. 7(2), 1–10 (2015).
    [Crossref]
  21. M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
    [Crossref] [PubMed]
  22. K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
    [Crossref] [PubMed]
  23. O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
    [Crossref]
  24. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  25. S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
    [Crossref]
  26. Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
    [Crossref] [PubMed]
  27. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006).
    [Crossref] [PubMed]
  28. A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
    [Crossref]
  29. W. Peng, Y. Liu, P. Fang, X. Liu, H. Wang, and F. Cheng, “Compact surface plasmon resonance imaging sensing system based on general optoelectronic components,” Opt. Express 23(16), 20540–20548 (2015).
    [PubMed]

2015 (11)

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

S. Isaacs and I. Abdulhalim, “Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach,” Appl. Phys. Lett. 106(19), 571–606 (2015).
[Crossref]

X. X. Liu, Y. Liu, Q. Liu, X. T. Gao, and W. Peng, “Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing,” Opt. Commun. 356, 212–217 (2015).
[Crossref]

J. Y. Lee, S. K. Byeon, and M. H. Moon, “Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry,” Anal. Chem. 87(2), 1266–1273 (2015).
[Crossref] [PubMed]

D. Ahmadian, C. Ghobadi, and J. Nourinia, “Tunable plasmonic sensor with metal–liquid crystal–metal structure,” IEEE Photonics J. 7(2), 1–10 (2015).
[Crossref]

K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
[Crossref] [PubMed]

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

J. Alogorri, B. G. Camara, A. G. Garcia, and V. Urruchi, “Fiber optic temperature sensor based on amplitude modulation of metallic and semiconductor nanoparticles in a liquid crystal mixture,” J. Lightwave Technol. 33(12), 2451–2455 (2015).
[Crossref]

W. Peng, Y. Liu, P. Fang, X. Liu, H. Wang, and F. Cheng, “Compact surface plasmon resonance imaging sensing system based on general optoelectronic components,” Opt. Express 23(16), 20540–20548 (2015).
[PubMed]

Y. Liu, S. Chen, Q. Liu, and W. Peng, “Micro-capillary-based evanescent field biosensor for sensitive, label-free DNA detection,” Opt. Express 23(16), 20686–20695 (2015).
[Crossref] [PubMed]

2014 (3)

L. L. Kegel, D. Boyne, and K. S. Booksh, “Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms,” Anal. Chem. 86(7), 3355–3364 (2014).
[Crossref] [PubMed]

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202(4), 557–567 (2014).
[Crossref]

2013 (3)

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

2010 (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

2009 (1)

2006 (2)

2005 (1)

2004 (1)

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

1998 (1)

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

1997 (1)

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

1995 (1)

G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
[Crossref]

Abdulhalim, I.

S. Isaacs and I. Abdulhalim, “Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach,” Appl. Phys. Lett. 106(19), 571–606 (2015).
[Crossref]

Ahmadian, D.

D. Ahmadian, C. Ghobadi, and J. Nourinia, “Tunable plasmonic sensor with metal–liquid crystal–metal structure,” IEEE Photonics J. 7(2), 1–10 (2015).
[Crossref]

Allinson, H.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

Alogorri, J.

Altug, H.

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

Baek, S. H.

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

Banerji, S.

Boden, N.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

Booksh, K. S.

L. L. Kegel, D. Boyne, and K. S. Booksh, “Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms,” Anal. Chem. 86(7), 3355–3364 (2014).
[Crossref] [PubMed]

Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, “Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases,” Opt. Lett. 30(17), 2218–2220 (2005).
[Crossref] [PubMed]

Boyne, D.

L. L. Kegel, D. Boyne, and K. S. Booksh, “Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms,” Anal. Chem. 86(7), 3355–3364 (2014).
[Crossref] [PubMed]

Bukar, N.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

Byeon, S. K.

J. Y. Lee, S. K. Byeon, and M. H. Moon, “Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry,” Anal. Chem. 87(2), 1266–1273 (2015).
[Crossref] [PubMed]

Camara, B. G.

Cetin, A. E.

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

Chen, S.

Cheng, F.

Chung, B. H.

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

Couture, M.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Deng, Z. Q.

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202(4), 557–567 (2014).
[Crossref]

Erramilli, S.

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

Evans, S. D.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

Fang, P.

Flynn, T. M.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

Gao, X. T.

X. X. Liu, Y. Liu, Q. Liu, X. T. Gao, and W. Peng, “Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing,” Opt. Commun. 356, 212–217 (2015).
[Crossref]

Garcia, A. G.

Ghobadi, C.

D. Ahmadian, C. Ghobadi, and J. Nourinia, “Tunable plasmonic sensor with metal–liquid crystal–metal structure,” IEEE Photonics J. 7(2), 1–10 (2015).
[Crossref]

Heeks, S. K.

G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
[Crossref]

Henderson, J. R.

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

Huang, M.

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

Iga, M.

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Ikeda, T.

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

Imrie, C. T.

G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
[Crossref]

Isaacs, S.

S. Isaacs and I. Abdulhalim, “Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach,” Appl. Phys. Lett. 106(19), 571–606 (2015).
[Crossref]

Ishikawa, T.

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Israelachvili, J. N.

K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
[Crossref] [PubMed]

Ito, K.

Jang, H. R.

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

Jha, R.

Jiang, Y. X.

Kanazawa, A.

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

Kashyap, R.

Kawata, T.

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Kegel, L. L.

L. L. Kegel, D. Boyne, and K. S. Booksh, “Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms,” Anal. Chem. 86(7), 3355–3364 (2014).
[Crossref] [PubMed]

Kim, Y. C.

Kitsunai, T.

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

Kristiansen, K.

K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
[Crossref] [PubMed]

Kurihara, S.

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Kuwahara, Y.

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Lee, H. J.

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

Lee, J. Y.

J. Y. Lee, S. K. Byeon, and M. H. Moon, “Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry,” Anal. Chem. 87(2), 1266–1273 (2015).
[Crossref] [PubMed]

Leviatanand, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Li, C.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Li, J.

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202(4), 557–567 (2014).
[Crossref]

Liu, B. H.

Liu, D.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Liu, Q.

X. X. Liu, Y. Liu, Q. Liu, X. T. Gao, and W. Peng, “Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing,” Opt. Commun. 356, 212–217 (2015).
[Crossref]

Y. Liu, S. Chen, Q. Liu, and W. Peng, “Micro-capillary-based evanescent field biosensor for sensitive, label-free DNA detection,” Opt. Express 23(16), 20686–20695 (2015).
[Crossref] [PubMed]

Liu, X.

Liu, X. X.

X. X. Liu, Y. Liu, Q. Liu, X. T. Gao, and W. Peng, “Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing,” Opt. Commun. 356, 212–217 (2015).
[Crossref]

Liu, Y.

Luan, N.

Lv, W.

Ma, L.

Masson, J. F.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Matsuura, Y.

Mertiri, A.

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

Miyagi, M.

Moon, M. H.

J. Y. Lee, S. K. Byeon, and M. H. Moon, “Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry,” Anal. Chem. 87(2), 1266–1273 (2015).
[Crossref] [PubMed]

Moritsugu, M.

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Nemova, G.

Nourinia, J.

D. Ahmadian, C. Ghobadi, and J. Nourinia, “Tunable plasmonic sensor with metal–liquid crystal–metal structure,” IEEE Photonics J. 7(2), 1–10 (2015).
[Crossref]

Ogata, T.

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Pan, S. S.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Paterson, B. J. A.

G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
[Crossref]

Pelechacz, D.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

Pelletier, J. N.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

Peng, W.

Robitaille, R.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

Russell, G. M.

G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
[Crossref]

Seki, A.

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Sharma, A. K.

Shi, Y. W.

Shiono, T.

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

Shuai, B.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Shum, P.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Tang, X. L.

Toulouse, J. L.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

Tsutsumi, O.

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

Urruchi, V.

Wang, H.

Wang, R.

Wark, A. W.

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

Watanabe, K.

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Xia, L.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Yan, M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Yao, J.

Yoshida, T.

Yu, X.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Zappone, B.

K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
[Crossref] [PubMed]

Zeng, H.

K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
[Crossref] [PubMed]

Zhang, Y.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

Zhao, S. S.

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202(4), 557–567 (2014).
[Crossref]

Zhou, C.

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Zhu, X. S.

Adv. Opt. Mater. (1)

A. E. Cetin, A. Mertiri, M. Huang, S. Erramilli, and H. Altug, “Thermal tuning of surface plasmon polaritons using liquid crystals,” Adv. Opt. Mater. 1(12), 915–920 (2013).
[Crossref]

Anal. Chem. (3)

H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, “Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform,” Anal. Chem. 86(1), 814–819 (2014).
[Crossref] [PubMed]

L. L. Kegel, D. Boyne, and K. S. Booksh, “Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms,” Anal. Chem. 86(7), 3355–3364 (2014).
[Crossref] [PubMed]

J. Y. Lee, S. K. Byeon, and M. H. Moon, “Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry,” Anal. Chem. 87(2), 1266–1273 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Isaacs and I. Abdulhalim, “Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach,” Appl. Phys. Lett. 106(19), 571–606 (2015).
[Crossref]

Biosens. Bioelectron. (1)

S. S. Zhao, N. Bukar, J. L. Toulouse, D. Pelechacz, R. Robitaille, J. N. Pelletier, and J. F. Masson, “Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples,” Biosens. Bioelectron. 64, 664–670 (2015).
[Crossref] [PubMed]

Chem. Mater. (1)

G. M. Russell, B. J. A. Paterson, C. T. Imrie, and S. K. Heeks, “Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry,” Chem. Mater. 7(11), 2185–2189 (1995).
[Crossref]

IEEE Photonics J. (1)

D. Ahmadian, C. Ghobadi, and J. Nourinia, “Tunable plasmonic sensor with metal–liquid crystal–metal structure,” IEEE Photonics J. 7(2), 1–10 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatanand, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 74–77 (2010).
[Crossref]

J. Phys. Chem. B (1)

S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, “Surface plasmon resonance imaging of liquid crystal anchoring on patterned self-assembled monolayers,” J. Phys. Chem. B 101(12), 2143–2148 (1997).
[Crossref]

Langmuir (1)

K. Kristiansen, H. Zeng, B. Zappone, and J. N. Israelachvili, “Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus,” Langmuir 31(13), 3965–3972 (2015).
[Crossref] [PubMed]

Macromol. Rapid Commun. (1)

M. Moritsugu, T. Ishikawa, T. Kawata, T. Ogata, Y. Kuwahara, and S. Kurihara, “Thermal and photochemical control of molecular orientation of azo-functionalized polymer liquid crystals and application for photo-rewritable paper,” Macromol. Rapid Commun. 32(19), 1546–1550 (2011).
[Crossref] [PubMed]

Macromolecules (1)

O. Tsutsumi, T. Kitsunai, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical phase transition behavior of polymer azobenzene liquid crystals with Electron-Donating and accepting substituents at the 4,4′-Positions,” Macromolecules 31(2), 355–359 (1998).
[Crossref]

Opt. Commun. (2)

X. X. Liu, Y. Liu, Q. Liu, X. T. Gao, and W. Peng, “Surface plasmon resonance biochemical sensor based on light guiding flexible fused silica capillary tubing,” Opt. Commun. 356, 212–217 (2015).
[Crossref]

L. Xia, Y. Zhang, C. Zhou, B. Shuai, and D. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[Crossref]

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202(4), 557–567 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Design of the SPR thermometer. (a) Schematic view of the hollow fiber filled with a liquid crystal medium, and temperature controlled by an external heat source. White light was launched into the hollow fiber and a spectrophotometer collected the response for different temperature values. (b) The structure of the silver coated hollow fiber. (c) The cross section of the hollow fiber filling with bulk homogeneous dielectric or a liquid crystal medium.
Fig. 2
Fig. 2 Schematic diagram of the liquid crystal phases changing with temperature. (a) Schematic view of different liquid crystal phases. (b) Liquid crystal phase transition process observed under the polarizing microscope.
Fig. 3
Fig. 3 (a) Normalized intensity transmission spectra with liquid crystal core for different temperature values. (b) Correlation of the resonance wavelength for different temperatures. The linear relationship is shown by the two red lines for the temperature ranges of 20~34.5 °C and 36~50°C, respectively. The blue dashed line represents the transition temperature between nematic and isotropic phases.
Fig. 4
Fig. 4 Normalized intensity transmission spectra of hollow fiber SPR sensor with different RIs of the bulk homogeneous dielectric medium. (a) Theoretical. (b) Experimental. (c) Linear relationship between the resonance wavelength of the hollow fiber SPR sensor (λ) and the refractive index of the bulk solutions (n). (d) The RI for the liquid crystal medium calculated from the linear relationship shown in Fig. 4(c). Experimental data correlate to the RI calculated from the calibration in Fig. 3(b).
Fig. 5
Fig. 5 SEM pictures of the cross section of the silver layer. (a) Surface structure of the silver and the hollow fiber. (b) Enlarged image of the silver layer.

Tables (1)

Tables Icon

Table 1 Volume Ratios between Polymethylphenyl Siloxane Fluid and Kerosene for Different RIs

Metrics