Abstract

We propose an ultra-broadband full-mesh wavelength router supporting the T- and O-bands using 3 stages of cascaded arrayed waveguide gratings (AWGs). The router architecture is based on a combination of waveband and channel routing by coarse and fine AWGs, respectively. We fabricated several T-band-specific silica-based AWGs and quantum dot semiconductor optical ampliers as part of the router, and demonstrated 10 Gbps data transmission for several wavelengths throughout a range of 7.4 THz. The power penalties were below 1 dB. Wavelength routing was also demonstrated, where tuning time within a 9.4-nm-wide waveband was below 400 ms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact OXC architecture, design and prototype development for flexible waveband routing optical networks

Tomohiro Ishikawa, Yojiro Mori, Hiroshi Hasegawa, Suresh Subramaniam, Ken-ichi Sato, and Osamu Moriwaki
Opt. Express 25(14) 15838-15853 (2017)

Development of Hierarchical Optical Path Cross-Connect Systems Employing Wavelength/Waveband Selective Switches

Kiyo Ishii, Shin-ichi Mitsui, Hiroshi Hasegawa, Ken-ichi Sato, Shin Kamei, Masayuki Okuno, and Hiroshi Takahashi
J. Opt. Commun. Netw. 3(7) 559-567 (2011)

Integrated 1.3/1.5 μm cyclic AWG router for λ-tunable WDM/TDM-PON

Takayuki Mizuno, Yasuaki Hashizume, Takashi Yamada, Shinya Tamaki, Hirotaka Nakamura, Shunji Kimura, Mikitaka Itoh, and Hiroshi Takahashi
Opt. Express 20(26) B1-B6 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
    [Crossref]
  2. H. Liu, C.-F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proc. of 18th IEEE HOTI 2010, CA, USA, 113–116.
    [Crossref]
  3. T. Pfeiffer, “New avenues of revenues: open access and infrastructure virtualization,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper NTh4E.1.
    [Crossref]
  4. N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C (2009).
    [Crossref]
  5. Y. Omigawa, N. Yamamoto, A. Kanno, T. Kawanishi, Y. Kurata, and H. Sotobayashi, “Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system,” Opt. Express 20(14), 14864–14870 (2012).
    [Crossref] [PubMed]
  6. N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, “Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems, ” in Proc. of ISLC 2008, Sorrento, Italy, P20 (2008).
  7. N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
    [Crossref]
  8. N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
    [Crossref]
  9. H. Asakura and H. Tsuda, “Design and characterization of an arrayed-waveguide grating router with an interleave-chirped array,” IEICE Electron. Express 12(9), 1–6 (2015).
    [Crossref]
  10. N. Yamamoto, K. Akahane, T. Kawanishi, Y. Omigawa, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique,” Opt. Express 19(26), B636–B644 (2011).
    [Crossref] [PubMed]
  11. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
    [Crossref]
  12. K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
    [Crossref]
  13. K. Noguchi, Y. Koike, H. Tanobe, K. Harada, and M. Matsuoka, “Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” J. Lightwave Technol. 22(2), 329–336 (2004).
    [Crossref]
  14. K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
    [Crossref]
  15. O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
    [Crossref]
  16. Z. Xu, X. Cheng, Y.-K. Yeo, X. Shao, L. Zhou, and H. Zhang, “Large-scale WDM passive optical network based on cyclical AWG,” Opt. Express 20(13), 13939–13946 (2012).
    [Crossref] [PubMed]
  17. F. Zhang, W.-D. Zhong, Z. Xu, T. H. Cheng, C. Michie, and I. Andonovic, “A broadcast/multicast-capable carrier-reuse WDM-PON,” J. Lightwave Technol. 29(15), 2276–2284 (2011).
    [Crossref]
  18. K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
    [Crossref]
  19. K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical-switch prototype compactly implemented with novel functional configuration,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3D.1.
    [Crossref]
  20. Y.-K. Yeo, Z. Xu, D. Wang, J. Liu, Y. Wang, and T.-H. Cheng, “High-speed optical switch fabrics with large port count,” Opt. Express 17(13), 10990–10997 (2009).
    [Crossref] [PubMed]
  21. K. Xi, Y.-H. Kao, and H. J. Chao, “A petabit bufferless optical switch for data center networks,” in Optical Interconnects for Future Data Center Networks, C. Kachris, K. Bergman, and I. Tomkos, ed. (Springer, 2013).
  22. X. Ye, Y. Yin, S. J. B. Yoo, P. Meija, R. Proietti, and V. Akella, “DOS – A scalable optical switch for datacenters,” in Proc. of 6th ACM/IEEE ANCS 2010, CA, USA, paper 24.
  23. R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
    [Crossref]
  24. P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
    [Crossref]
  25. P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N × N waveguide grating routers,” J. Lightwave Technol. 18(7), 985–991 (2000).
    [Crossref]
  26. S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
    [Crossref]
  27. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
    [Crossref]
  28. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
    [Crossref]
  29. T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
    [Crossref]
  30. H.-C. Lu and W.-S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photonics Technol. Lett. 20(1), 3–5 (2008).
    [Crossref]
  31. K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
    [Crossref] [PubMed]
  32. J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1186–1193 (2002).
    [Crossref]
  33. K. Maru, “Performance analysis of a synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating with phase errors,” J. Lightwave Technol. 29(13), 1965–1974 (2011).
    [Crossref]
  34. C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15(7), 918–920 (2003).
    [Crossref]
  35. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
    [Crossref]
  36. C. R. Doerr, M. Cappuzzo, L. Gomez, E. Chen, A. Wong-Foy, C. Ho, J. Lam, and K. McGreer, “Planar lightwave circuit eight-channel CWDM multiplexer with <3.9-dB insertion loss,” J. Lightwave Technol. 23(1), 62–65 (2005).
    [Crossref]
  37. K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
    [Crossref]

2015 (1)

H. Asakura and H. Tsuda, “Design and characterization of an arrayed-waveguide grating router with an interleave-chirped array,” IEICE Electron. Express 12(9), 1–6 (2015).
[Crossref]

2013 (3)

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
[Crossref]

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

2012 (2)

2011 (4)

2010 (1)

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[Crossref]

2009 (4)

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

Y.-K. Yeo, Z. Xu, D. Wang, J. Liu, Y. Wang, and T.-H. Cheng, “High-speed optical switch fabrics with large port count,” Opt. Express 17(13), 10990–10997 (2009).
[Crossref] [PubMed]

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
[Crossref]

2008 (2)

H.-C. Lu and W.-S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photonics Technol. Lett. 20(1), 3–5 (2008).
[Crossref]

A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[Crossref]

2006 (1)

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

2005 (3)

2004 (1)

2003 (2)

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15(7), 918–920 (2003).
[Crossref]

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

2002 (3)

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1186–1193 (2002).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
[Crossref]

2000 (3)

P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N × N waveguide grating routers,” J. Lightwave Technol. 18(7), 985–991 (2000).
[Crossref]

K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

1995 (1)

Abe, M.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
[Crossref]

Akahane, K.

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
[Crossref]

N. Yamamoto, K. Akahane, T. Kawanishi, Y. Omigawa, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique,” Opt. Express 19(26), B636–B644 (2011).
[Crossref] [PubMed]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[Crossref]

N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, “Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems, ” in Proc. of ISLC 2008, Sorrento, Italy, P20 (2008).

Akella, V.

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Andonovic, I.

Arakawa, Y.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Asakura, H.

H. Asakura and H. Tsuda, “Design and characterization of an arrayed-waveguide grating router with an interleave-chirped array,” IEICE Electron. Express 12(9), 1–6 (2015).
[Crossref]

Bernasconi, P.

Buhl, L. L.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

Burrows, E.

Cappuzzo, M.

Cappuzzo, M. A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

Centanni, J.

Charlet, G.

Chen, E.

Chen, E. Y.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

Cheng, T. H.

Cheng, T.-H.

Cheng, X.

Doerr, C.

Doerr, C. R.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

C. R. Doerr, M. Cappuzzo, L. Gomez, E. Chen, A. Wong-Foy, C. Ho, J. Lam, and K. McGreer, “Planar lightwave circuit eight-channel CWDM multiplexer with <3.9-dB insertion loss,” J. Lightwave Technol. 23(1), 62–65 (2005).
[Crossref]

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15(7), 918–920 (2003).
[Crossref]

Dragone, C.

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Gnauck, A. H.

Gomez, L.

Gomez, L. T.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

Harada, K.

Hasegawa, H.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
[Crossref]

He, J.-J.

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1186–1193 (2002).
[Crossref]

Hibino, Y.

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

Higuma, K.

Ho, C.

Inoue, Y.

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

Ishii, M.

Itoh, M.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
[Crossref]

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

Ji, P. N.

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

Jinguji, K.

Johnson, C.

H. Liu, C.-F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proc. of 18th IEEE HOTI 2010, CA, USA, 113–116.
[Crossref]

Kachris, C.

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

Kamei, S.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
[Crossref]

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Kaneko, A.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Kanno, A.

Y. Omigawa, N. Yamamoto, A. Kanno, T. Kawanishi, Y. Kurata, and H. Sotobayashi, “Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system,” Opt. Express 20(14), 14864–14870 (2012).
[Crossref] [PubMed]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
[Crossref]

Kanonakis, K.

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

Kato, K.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Katouf, R.

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[Crossref]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Kawanishi, T.

Kinoshita, Y.

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
[Crossref]

Kitoh, T.

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

Koike, Y.

Kotoku, M.

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Kurata, Y.

Lam, C.-F.

H. Liu, C.-F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proc. of 18th IEEE HOTI 2010, CA, USA, 113–116.
[Crossref]

Lam, J.

Laskowski, E.

Liu, H.

H. Liu, C.-F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proc. of 18th IEEE HOTI 2010, CA, USA, 113–116.
[Crossref]

Liu, J.

Lu, H.-C.

H.-C. Lu and W.-S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photonics Technol. Lett. 20(1), 3–5 (2008).
[Crossref]

Maru, K.

Matsuoka, M.

K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
[Crossref]

K. Noguchi, Y. Koike, H. Tanobe, K. Harada, and M. Matsuoka, “Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” J. Lightwave Technol. 22(2), 329–336 (2004).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

McGreer, K.

Michie, C.

Moriwaki, O.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

Nitta, C. J.

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

Niwa, T.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
[Crossref]

Noguchi, K.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
[Crossref]

K. Noguchi, Y. Koike, H. Tanobe, K. Harada, and M. Matsuoka, “Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” J. Lightwave Technol. 22(2), 329–336 (2004).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Oguma, M.

Okada, A.

K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Okamoto, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
[Crossref]

K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett. 20(1), 43–45 (1995).
[Crossref] [PubMed]

Omigawa, Y.

Pafchek, R.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15(7), 918–920 (2003).
[Crossref]

Paunescu, A.

Proietti, R.

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

Qian, D.

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

Sakai, Y.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Sakamoto, T.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Sato, K.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
[Crossref]

Shao, X.

Shibata, T.

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
[Crossref]

Sotobayashi, H.

Y. Omigawa, N. Yamamoto, A. Kanno, T. Kawanishi, Y. Kurata, and H. Sotobayashi, “Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system,” Opt. Express 20(14), 14864–14870 (2012).
[Crossref] [PubMed]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
[Crossref]

N. Yamamoto, K. Akahane, T. Kawanishi, Y. Omigawa, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique,” Opt. Express 19(26), B636–B644 (2011).
[Crossref] [PubMed]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[Crossref]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, “Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems, ” in Proc. of ISLC 2008, Sorrento, Italy, P20 (2008).

Stulz, L. W.

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15(7), 918–920 (2003).
[Crossref]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Suzuki, S.

K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
[Crossref]

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Takada, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
[Crossref]

Takahara, A.

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

Takahashi, H.

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

Takai, H.

Tanobe, H.

Tomkos, I.

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

Tran, P.

Tsuchiya, M.

N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, “Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems, ” in Proc. of ISLC 2008, Sorrento, Italy, P20 (2008).

Tsuda, H.

H. Asakura and H. Tsuda, “Design and characterization of an arrayed-waveguide grating router with an interleave-chirped array,” IEICE Electron. Express 12(9), 1–6 (2015).
[Crossref]

Wang, D.

Wang, W.-S.

H.-C. Lu and W.-S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photonics Technol. Lett. 20(1), 3–5 (2008).
[Crossref]

Wang, Y.

Watanabe, T.

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
[Crossref]

Winzer, P.

Wong-Foy, A.

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

C. R. Doerr, M. Cappuzzo, L. Gomez, E. Chen, A. Wong-Foy, C. Ho, J. Lam, and K. McGreer, “Planar lightwave circuit eight-channel CWDM multiplexer with <3.9-dB insertion loss,” J. Lightwave Technol. 23(1), 62–65 (2005).
[Crossref]

Xu, Z.

Yamada, H.

Yamamoto, N.

Y. Omigawa, N. Yamamoto, A. Kanno, T. Kawanishi, Y. Kurata, and H. Sotobayashi, “Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system,” Opt. Express 20(14), 14864–14870 (2012).
[Crossref] [PubMed]

N. Yamamoto, K. Akahane, T. Kawanishi, Y. Omigawa, H. Sotobayashi, Y. Yoshioka, and H. Takai, “Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique,” Opt. Express 19(26), B636–B644 (2011).
[Crossref] [PubMed]

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
[Crossref]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[Crossref]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, “Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems, ” in Proc. of ISLC 2008, Sorrento, Italy, P20 (2008).

Yeo, Y.-K.

Yin, Y.

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

Yoo, S. J. B.

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

Yoshioka, Y.

Yu, R.

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

Zhang, F.

Zhang, H.

Zhong, W.-D.

Zhou, L.

Electron. Lett. (3)

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamoto, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, and M. Matsuoka, “32 × 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform-loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett. 36(15), 1294–1296 (2000).
[Crossref]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “5 GHz-spaced 4200-channel two-stage tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum generation,” Electron. Lett. 38(12), 572–573 (2002).
[Crossref]

T. Kitoh, Y. Inoue, M. Itoh, M. Kotoku, and Y. Hibino, “Low chromatic-dispersion flat-top arrayed waveguide grating filter,” Electron. Lett. 39(15), 1116–1118 (2003).
[Crossref]

IEEE Commun. Mag. (1)

K. Sato, H. Hasegawa, T. Niwa, and T. Watanabe, “A large-scale wavelength routing optical switch for data center networks,” IEEE Commun. Mag. 51(9), 46–52 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J.-J. He, “Phase-dithered waveguide grating with flat passband and sharp transitions,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1186–1193 (2002).
[Crossref]

R. Proietti, C. J. Nitta, Y. Yin, R. Yu, S. J. B. Yoo, and V. Akella, “Scalable and distributed contention resolution in AWGR-based data center switches using RSOA-based optical mutual exclusion,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3600111 (2013).
[Crossref]

P. N. Ji, D. Qian, K. Kanonakis, C. Kachris, and I. Tomkos, “Design and evaluation of a flexible-bandwidth OFDM-based intra-data center interconnect,” IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (6)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-Bands using an arrayed-waveguide grating with gaussian passbands as a primary filter,” IEEE Photonics Technol. Lett. 14(5), 648–650 (2002).
[Crossref]

H.-C. Lu and W.-S. Wang, “Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response,” IEEE Photonics Technol. Lett. 20(1), 3–5 (2008).
[Crossref]

O. Moriwaki, K. Noguchi, T. Sakamoto, S. Kamei, and H. Takahashi, “Wavelength path reconfigurable AWG-STAR employing coprime-channel-cycle arrayed-waveguide gratings,” IEEE Photonics Technol. Lett. 21(14), 1005–1007 (2009).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

C. R. Doerr, L. W. Stulz, and R. Pafchek, “Compact and low-loss integrated box-like passband multiplexer,” IEEE Photonics Technol. Lett. 15(7), 918–920 (2003).
[Crossref]

C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and L. L. Buhl, “Wideband arrayed waveguide grating with three low-loss maxima per passband,” IEEE Photonics Technol. Lett. 18(21), 2308–2310 (2006).
[Crossref]

IEICE Electron. Express (1)

H. Asakura and H. Tsuda, “Design and characterization of an arrayed-waveguide grating router with an interleave-chirped array,” IEICE Electron. Express 12(9), 1–6 (2015).
[Crossref]

J. Lightwave Technol. (9)

K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
[Crossref]

P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N × N waveguide grating routers,” J. Lightwave Technol. 18(7), 985–991 (2000).
[Crossref]

K. Noguchi, Y. Koike, H. Tanobe, K. Harada, and M. Matsuoka, “Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” J. Lightwave Technol. 22(2), 329–336 (2004).
[Crossref]

C. R. Doerr, M. Cappuzzo, L. Gomez, E. Chen, A. Wong-Foy, C. Ho, J. Lam, and K. McGreer, “Planar lightwave circuit eight-channel CWDM multiplexer with <3.9-dB insertion loss,” J. Lightwave Technol. 23(1), 62–65 (2005).
[Crossref]

K. Noguchi, A. Okada, S. Kamei, S. Suzuki, and M. Matsuoka, “Temperature control-free full-mesh wavelength routing network (AWG-STAR) with CWDM AWG-router,” J. Lightwave Technol. 23(4), 1568–1575 (2005).
[Crossref]

A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals,” J. Lightwave Technol. 26(1), 79–84 (2008).
[Crossref]

S. Kamei, M. Ishii, A. Kaneko, T. Shibata, and M. Itoh, “N × N cyclic-frequency router with improved performance based on arrayed-waveguide grating,” J. Lightwave Technol. 27(18), 4097–4104 (2009).
[Crossref]

K. Maru, “Performance analysis of a synchronized-router-based flat-passband filter using multiple-input arrayed waveguide grating with phase errors,” J. Lightwave Technol. 29(13), 1965–1974 (2011).
[Crossref]

F. Zhang, W.-D. Zhong, Z. Xu, T. H. Cheng, C. Michie, and I. Andonovic, “A broadcast/multicast-capable carrier-reuse WDM-PON,” J. Lightwave Technol. 29(15), 2276–2284 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

N. Yamamoto, Y. Omigawa, Y. Kinoshita, A. Kanno, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Development of broadband optical frequency resource over 8.4-THz in 1.0-μm waveband for photonic transport systems,” Proc. SPIE 7958, 79580F (2011).
[Crossref]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

Other (6)

N. Yamamoto, H. Sotobayashi, K. Akahane, and M. Tsuchiya, “Quantum-dot Fabry-Perot laser-diode with a 4-THz injection-seeding bandwidth for 1-μm optical-waveband WDM systems, ” in Proc. of ISLC 2008, Sorrento, Italy, P20 (2008).

H. Liu, C.-F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks - opportunities and challenges for WDM,” in Proc. of 18th IEEE HOTI 2010, CA, USA, 113–116.
[Crossref]

T. Pfeiffer, “New avenues of revenues: open access and infrastructure virtualization,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper NTh4E.1.
[Crossref]

K. Xi, Y.-H. Kao, and H. J. Chao, “A petabit bufferless optical switch for data center networks,” in Optical Interconnects for Future Data Center Networks, C. Kachris, K. Bergman, and I. Tomkos, ed. (Springer, 2013).

X. Ye, Y. Yin, S. J. B. Yoo, P. Meija, R. Proietti, and V. Akella, “DOS – A scalable optical switch for datacenters,” in Proc. of 6th ACM/IEEE ANCS 2010, CA, USA, paper 24.

K. Ueda, Y. Mori, H. Hasegawa, K. Sato, and T. Watanabe, “Large-scale optical-switch prototype compactly implemented with novel functional configuration,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper W3D.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of an N × N non-blocking wavelength router.

Fig. 2
Fig. 2

(a) 3-stage MK × MK wavelength router architecture consisting of coarse and fine AWGs. (b) Allocation of M wavebands with K channels in each waveband. Here, λ(m,k) implies the kth wavelength of the mth waveband.

Fig. 3
Fig. 3

Example of appropriate optical fiber interconnections between the fine AWGs on the second stage and the coarse AWGs on the third stage for a 12 × 12 wavelength router (M = 3, K = 4). (a) The output ports of the 1st, 2nd, and 3rd fine AWGs of the 1st layer are each connected to coarse AWGs on the 1st, 2nd, and 3rd layer, respectively. (b) The output ports of the 1st, 2nd, and 3rd fine AWGs of the 2nd layer are each connected to coarse AWGs on the 2nd, 3rd, and 1st layer, respectively. In a similar fashion, the output ports of the 1st, 2nd, and 3rd fine AWGs of the 3rd layer should be connected to coarse AWGs on the 3rd, 1st, and 2nd layer, respectively.

Fig. 4
Fig. 4

Total number of (a) AWGs and (b) optical fiber interconnections required to construct an MK × MK wavelength router in the case of K = 32, 64, and 128.

Fig. 5
Fig. 5

(a) Waveguide core effective refractive index, neff, and (b) mode field diameter throughout T- and O-bands for Δ = 0.75%, 1.00%, and 1.50%. We assumed a square waveguide with a core width of 4.5 μm, 4 μm, and 3.2 μm for each Δ, respectively. Dash-dot-dot line in (a) show the cladding refractive index, n0, which is assumed as pure silica, calculated using Sellmeier equation. All calculations with all Δ satisfying its corresponding value at λ = 1.0 μm.

Fig. 6
Fig. 6

Calculation results of maximum PPD, δf or δλ, normalized to channel spacing, Δf or Δλ. |δff|max = 1, and |δλλ|max = 1 correspond to a deviation that equals one channel spacing. Normalized deviation for grids equally spaced in (a) frequency and (b) wavelength when the center wavelength, λ0 is fixed at 1.18 μm. Note that at λ0 = 1.18 μm, wavelength spacing of 0.23 nm, 0.46 nm, and 0.93 nm approximately equal to 50 GHz, 100 GHz, and 200 GHz, respectively, in terms of frequency. Note also that we applied input and output waveguide shifts to all of the wavelength-based AWGs as suggested in [25] to reduce PPD. Normalized PPD for grids equally spaced in (c) frequency and (d) wavelength when the channel spacings, Δf and Δλ, are fixed at 50 GHz and 0.23 nm, respectively.

Fig. 7
Fig. 7

Measured transmission spectra of the moduled (a) 1 × 23, 15.6-nm AWG and (b) 47 × 47, 0.2-nm AWG. mon. represents the transmission spectrum of monitor waveguides. The fine AWG shown in (b) is designed to operate at the 5th waveband.

Fig. 8
Fig. 8

Experimental setup for transmission demonstration of 1081-channel wavelength router.

Fig. 9
Fig. 9

(a) Gain and noise figure properties of the fabricated QD-SOAs when optical input power and injection current are −10 dB and 500 mA, respectively. (b) Gain-saturation characteristic and 3-dB gain saturation output power of QD-SOA1 for λ = 1070.6 nm when injection current is 500 mA and optical input power is adjusted from 12.6 dBm to 0 dBm. On a side note, due to the insufficient optical power of our WTL, the gain-saturation characteristic of QD-SOA1 was measured by firstly amplifying the optical power using QD-SOA2. The lack of optical power also prevents us from measuring gain-saturation characteristics for other wavelengths.

Fig. 10
Fig. 10

Measured BER curves of several wavelength channels of the router and their back-to-back (btb) configuration. (a): One wavelength in each of the 4th, 5th, and 6th waveband. (b): λ = 1070.6 nm for 5 different routing paths (legend shows the input and output port numbers of the fine AWG). The inset in (a) and (b) show the eye patterns of the btb configuration for the three wavelengths shown in (a). On a side note, the O/E converter used for the eye pattern measurement was the conventional C-band-specific type. (c) and (d): Several wavelengths in the 5th waveband and their btb configuration when the input port of the fine AWG is fixed at the 24th.

Fig. 11
Fig. 11

Experimental setup for wavelength tuning measurement.

Fig. 12
Fig. 12

Example of wavelength routing (a) within a waveband and (b) inter-wavebands.

Fig. 13
Fig. 13

Wavelength tuning time (a) within the 5th waveband when the initial wavelength is fixed at 1066 nm, and (b) inter-wavebands for various initial wavelengths. Below zero tuning range indicates wavelength tuning to wavelengths shorter than the initial wavelength.

Tables (1)

Tables Icon

Table 1 Design Parameters of the Coarse and Fine AWGs

Metrics