Abstract

We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric elastomer stack actuator-based autofocus fluid lens

Pejman Rasti, Henry Hous, Helmut F. Schlaak, Rudolf Kiefer, and Gholamreza Anbarjafari
Appl. Opt. 54(33) 9976-9980 (2015)

Large-stroke convex micromirror actuated by electromagnetic force for optical power control

Md. Mahabub Hossain, Wu Bin, and Seong Ho Kong
Opt. Express 23(22) 28358-28368 (2015)

Explicit computational model of dielectric elastomeric lenses

Yanjie Cao, Yanan Wang, Yang Liu, and Yu-Xin Xie
Opt. Express 25(23) 28710-28717 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
    [Crossref]
  2. Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
    [Crossref]
  3. S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
    [Crossref]
  4. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [Crossref] [PubMed]
  5. G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
    [Crossref]
  6. H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  7. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [Crossref]
  8. S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
    [Crossref]
  9. K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
    [Crossref] [PubMed]
  10. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
    [Crossref]
  11. D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
    [Crossref]
  12. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
    [Crossref]
  13. X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
    [Crossref]
  14. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  15. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref] [PubMed]
  16. L. Li, C. Liu, H. Ren, H. Deng, and Q.-H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
    [Crossref] [PubMed]
  17. C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
    [Crossref] [PubMed]
  18. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  19. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [Crossref]
  20. H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  21. C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [Crossref] [PubMed]
  22. C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
    [Crossref] [PubMed]
  23. C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
    [Crossref]
  24. J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
    [Crossref]
  25. M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
    [Crossref]
  26. C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
    [Crossref]
  27. T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
    [Crossref]
  28. E. S. Claflin and N. Bareket, “Configuring an electrostatic membrane mirror by least- squares fitting with analytically derived influence functions,” J. Opt. Soc. Am. A 3(11), 1833–1839 (1986).
    [Crossref]
  29. E. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11(9), 1056–1069 (2003).
    [Crossref] [PubMed]
  30. D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
    [Crossref]
  31. K. Seidl, J. Knobbe, and H. Grüger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
    [Crossref] [PubMed]
  32. J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009).
    [Crossref] [PubMed]
  33. H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
    [Crossref] [PubMed]
  34. Y.-H. Lin, Y.-L. Liu, and G.-D. J. Su, “Optical zoom module based on two deformable mirrors for mobile device applications,” Appl. Opt. 51(11), 1804–1810 (2012).
    [Crossref] [PubMed]

2015 (3)

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

L. Li, C. Liu, H. Ren, H. Deng, and Q.-H. Wang, “Annular folded electrowetting liquid lens,” Opt. Lett. 40(9), 1968–1971 (2015).
[Crossref] [PubMed]

C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref] [PubMed]

2014 (2)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

K. Wei, N. W. Domicone, and Y. Zhao, “Electroactive liquid lens driven by an annular membrane,” Opt. Lett. 39(5), 1318–1321 (2014).
[Crossref] [PubMed]

2012 (3)

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]

Y.-H. Lin, Y.-L. Liu, and G.-D. J. Su, “Optical zoom module based on two deformable mirrors for mobile device applications,” Appl. Opt. 51(11), 1804–1810 (2012).
[Crossref] [PubMed]

2011 (2)

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

2010 (3)

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

H. Ren, H. Xianyu, S. Xu, and S.-T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref] [PubMed]

2005 (1)

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2003 (3)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

E. Fernández and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11(9), 1056–1069 (2003).
[Crossref] [PubMed]

2002 (1)

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]

2001 (1)

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

1993 (1)

1992 (1)

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

1986 (1)

1976 (1)

M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
[Crossref]

1974 (1)

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Allain, M.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Artal, P.

Bareket, N.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Bierden, P.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]

Bifano, T.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]

Bolis, S.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Bridoux, C.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Brown, C. V.

C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref] [PubMed]

Bu, J. U.

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Chang, C. A.

Chang, Y.-H.

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

Chen, T.-Y.

Cheng, C.-C.

Cheng, Y.-C.

Chien, Y.-H.

Cho, H. J.

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Claflin, E. S.

Cone, P. F.

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Deng, H.

Dimas, C.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]

Domicone, N. W.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Fanget, S.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Feinleib, J.

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]

Fernández, E.

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Genetti, G. J.

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

Grüger, H.

Gu, Z.-Z.

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

Hamnett, W. S.

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

Han, G.-Z.

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

Han, Y.-H.

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Horng, J.-B.

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

Horsky, T. N.

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

Hsieh, H.-T.

Hsu, W.-Y.

Jacquet, F.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Jiang, H.

D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Ke, S.-S.

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

Knobbe, J.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kyung, K.-U.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

Lee, J.-W.

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

Lee, S.-H.

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

Lesecq, S.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Li, C.

D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

Li, L.

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Lin, M.-H.

Lin, P.-D.

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

Lin, P.-H.

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

Lin, Y.-H.

Lipson, S. G.

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]

Liu, C.

Liu, C.-S.

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

Liu, Y.-L.

Lo, C.-W.

D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Martinez, T.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

McHale, G.

C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref] [PubMed]

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Morita, S.

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Nam, H.-J.

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

Nam, S.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

Nicolas, S.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

O’Mara, D. M.

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Park, B.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

Park, S.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

Park, S. K.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

Payne, D. M.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

Perreault, J.

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]

Pouydebasque, A.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Ren, H.

Restaino, S. R.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Schiller, C. M.

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

Seidl, K.

Su, G.-D. J.

Sugiura, N.

Sun, C.

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

Sun, L.-G.

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

Sweatt, W. C.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

Trabi, C. L.

C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref] [PubMed]

Tsai, C.-W. G.

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Wang, J.-L.

Wang, Q.-H.

Warde, C.

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

Wei, H.-C.

Wei, K.

Wick, D. V.

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

Wu, S.-T.

Xianyu, H.

Xiong, G.-R.

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

Xu, S.

Yang, C.-C.

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Yee, Y.

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

Yeh, J. A.

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref] [PubMed]

Yellin, M.

M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
[Crossref]

Yun, S.

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

Zarudniev, M.

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Zeng, X.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Zhao, Y.

Zhu, D.

D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (8)

G.-R. Xiong, Y.-H. Han, C. Sun, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, “Liquid microlens with tunable focal length and light transmission,” Appl. Phys. Lett. 92(24), 241119 (2008).
[Crossref]

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

S. Yun, S. Park, B. Park, S. Nam, S. K. Park, and K.-U. Kyung, “A thin film active-lens with translational control for dynamically programmable optical zoom,” Appl. Phys. Lett. 107(8), 081907 (2015).
[Crossref]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref] [PubMed]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

J. Feinleib, S. G. Lipson, and P. F. Cone, “Monolithic piezoelectric mirror for wavefront correction,” Appl. Phys. Lett. 25(5), 311–313 (1974).
[Crossref]

IEEE Trans. Magn. (1)

C.-S. Liu, P.-D. Lin, P.-H. Lin, S.-S. Ke, Y.-H. Chang, and J.-B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Trans. Magn. 45(1), 155–159 (2009).
[Crossref]

J. Microelectromech. Syst. (2)

D. Zhu, C.-W. Lo, C. Li, and H. Jiang, “Hydrogel-based tunable-focus liquid microlens array with fast response time,” J. Microelectromech. Syst. 21(5), 1146–1155 (2012).
[Crossref]

C.-C. Yang, C.-W. G. Tsai, and J. A. Yeh, “Dynamic behavior of liquid microlenses actuated using dielectric force,” J. Microelectromech. Syst. 20(5), 1143–1149 (2011).
[Crossref]

J. Micromech. Microeng. (1)

X. Zeng, C. Li, D. Zhu, H. J. Cho, and H. Jiang, “Tunable microlens arrays actuated by various thermo-responsive hydrogel structures,” J. Micromech. Microeng. 20(11), 115035 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Langmuir (1)

C. V. Brown, G. McHale, and C. L. Trabi, “Dielectrophoresis-driven spreading of immersed liquid droplets,” Langmuir 31(3), 1011–1016 (2015).
[Crossref] [PubMed]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (4)

M. Yellin, “Using membrane mirrors in adaptive optics,” Proc. SPIE 0075, 97–102 (1976).
[Crossref]

C. M. Schiller, T. N. Horsky, D. M. O’Mara, W. S. Hamnett, G. J. Genetti, and C. Warde, “Charge-transfer-plate deformable membrane mirrors for adaptive optics applications,” Proc. SPIE 1543, 120–127 (1992).
[Crossref]

T. Bifano, J. Perreault, P. Bierden, and C. Dimas, “Micromachined deformable mirrors for adaptive optics,” Proc. SPIE 4825, 10–13 (2002).
[Crossref]

D. V. Wick, T. Martinez, D. M. Payne, W. C. Sweatt, and S. R. Restaino, “Active optical zoom system,” Proc. SPIE 5798, 151–157 (2005).
[Crossref]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

Y. Yee, H.-J. Nam, S.-H. Lee, J. U. Bu, and J.-W. Lee, “PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage,” Sens. Actuators A Phys. 89(1-2), 166–173 (2001).
[Crossref]

Other (1)

S. Nicolas, M. Allain, C. Bridoux, S. Fanget, S. Lesecq, M. Zarudniev, S. Bolis, A. Pouydebasque, and F. Jacquet, “Fabrication and characterization of a new varifocal liquid lens with embedded PZT actuators for high optical performances,” in Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2015), pp. 65–68.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (11623 KB)      Demonstraion

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 An illustrated configuration of a electrostatic deformable mirror operating under a voltage applied between an active mirror and a basement (a) and basement geometry designed to be flat (left), convex (center) and concave (right) shape (b).
Fig. 2
Fig. 2 Schematic diagram of the fabrication process (a), photographs of a convex and a concave basement (inset) made with a 3D printer in which the stacking resolution is 16 μm and their cross-sectional profiles (b), and photographs of the fabricated EDM (c).
Fig. 3
Fig. 3 Geometrical models of the EDMs with different basements (a) and a comparison of the numerically simulated cross-sectional profiles of the deformed mirrors when the deformed depth is 91.8 μm (b).
Fig. 4
Fig. 4 Performance tests of the EDMs with different basement: voltage and deformed depth dependent focal length profiles (a and b), comparison of the cross-sectional profiles of the deformed mirrors under two different deformed depths (c).
Fig. 5
Fig. 5 Dynamic response tests of the EDM: frequency dependent deformed depth profiles (a), time-deformed depth profiles duing operation with repetitive square input signals (2.4 kV at 10 Hz) (b) and repetitive sinusoidal input signal (2.4 kV at 115 Hz), respectively (c), and hysteresis curves of the deformation responses (d).
Fig. 6
Fig. 6 (Visualization 1) An optical system for reliability test of the focal length variation (a), the comparison of focal length obtained from numerical calculation and experiment (b), and images of spots of collimated laser beam reflected from the EDMs during operation with different input voltages (c).
Fig. 7
Fig. 7 Focusing properties of the beam reflected from the EDM: focal length dependent beam spot sizes on focal planes (a) and spatial intensity distribution of the focusing beam at the focal length of 102 cm (b).
Fig. 8
Fig. 8 A 3-dimensional morphology of the EDM under an input voltage of 3 kV (a) and images of periodic dot pattern acquired by using the EDM with different input voltages of 0, 1.3, and 1.6 kV (b).

Tables (1)

Tables Icon

Table 1 Strehl ratios of the EDM with different focal lengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y= 1 4f x 2 +d,

Metrics