Abstract

Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, ENIR, that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (EQCL = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (ENIREQCL) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ(2), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade lasers: 20 years of challenges

Miriam Serena Vitiello, Giacomo Scalari, Benjamin Williams, and Paolo De Natale
Opt. Express 23(4) 5167-5182 (2015)

Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs

Michael G. Hansen, Ingo Ernsting, Sergey V. Vasilyev, Arnaud Grisard, Eric Lallier, Bruno Gérard, and Stephan Schiller
Opt. Express 21(22) 27043-27056 (2013)

Monte Carlo analysis of the terahertz difference frequency generation susceptibility in quantum cascade laser structures

Christian Jirauschek, Hesham Okeil, and Paolo Lugli
Opt. Express 23(2) 1670-1678 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
    [Crossref]
  2. W. Shin, S. Han, C. Park, and K. Oh, “All fiber optical inter-band router for broadband wavelength division multiplexing,” Opt. Express 12(9), 1815–1822 (2004).
    [Crossref] [PubMed]
  3. J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
    [Crossref]
  4. M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
    [Crossref]
  5. S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
    [Crossref]
  6. B. Zaks, R. B. Liu, and M. S. Sherwin, “Experimental observation of electron-hole recollisions,” Nature 483(7391), 580–583 (2012).
    [Crossref] [PubMed]
  7. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  8. A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  9. P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
    [Crossref]
  10. J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
    [Crossref]
  11. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  12. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
    [Crossref]
  13. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
    [Crossref]
  14. R. L. Sutherland, Handbook of Nonlinear Optics (Taylor & Francis, 2003).
  15. C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
    [Crossref]
  16. R. Boyd, Nonlinear Optics, 3rd Edition, (Elsevier, 2008).
  17. G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Éditions de Physique, 1988).
  18. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
    [Crossref]
  19. E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
    [Crossref]
  20. J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B Condens. Matter 38(6), 4056–4066 (1988).
    [Crossref] [PubMed]
  21. A. K. Saxena, “Electron mobility in Ga(1-x)Al(x)As alloys,” Phys. Rev. B 24(6), 3295–3302 (1981).
    [Crossref]
  22. J. I. Pankove, “Absorption Edge of Impure Gallium Arsenide,” Phys. Rev. 140(6A), A2059–A2065 (1965).
    [Crossref]
  23. S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
    [Crossref]
  24. M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
    [Crossref]
  25. J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
    [Crossref] [PubMed]
  26. H. Yoshida, T. Mozume, T. Nishimura, and O. Wada, “Ultrafast intersubband transitions in InGaAs/AlAs coupled double quantum well structures for near-infrared all-optical switching,” in Lasers and Electro-Optics Society Annual Meeting,1997. LEOS '97 10th Annual Meeting. Conference Proceedings., IEEE, 1997), 441–442 vol.442.
    [Crossref]
  27. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [PubMed]
  28. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  29. M. G. Hansen, I. Ernsting, S. V. Vasilyev, A. Grisard, E. Lallier, B. Gérard, and S. Schiller, “Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs,” Opt. Express 21(22), 27043–27056 (2013).
    [Crossref] [PubMed]

2014 (1)

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

2013 (2)

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

M. G. Hansen, I. Ernsting, S. V. Vasilyev, A. Grisard, E. Lallier, B. Gérard, and S. Schiller, “Robust, frequency-stable and accurate mid-IR laser spectrometer based on frequency comb metrology of quantum cascade lasers up-converted in orientation-patterned GaAs,” Opt. Express 21(22), 27043–27056 (2013).
[Crossref] [PubMed]

2012 (3)

B. Zaks, R. B. Liu, and M. S. Sherwin, “Experimental observation of electron-hole recollisions,” Nature 483(7391), 580–583 (2012).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

2010 (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

2009 (3)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[PubMed]

2007 (1)

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

2006 (1)

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

2004 (2)

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

W. Shin, S. Han, C. Park, and K. Oh, “All fiber optical inter-band router for broadband wavelength division multiplexing,” Opt. Express 12(9), 1815–1822 (2004).
[Crossref] [PubMed]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

1999 (1)

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

1997 (1)

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

1996 (1)

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

1994 (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

1988 (1)

J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B Condens. Matter 38(6), 4056–4066 (1988).
[Crossref] [PubMed]

1981 (1)

A. K. Saxena, “Electron mobility in Ga(1-x)Al(x)As alloys,” Phys. Rev. B 24(6), 3295–3302 (1981).
[Crossref]

1974 (1)

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

1965 (1)

J. I. Pankove, “Absorption Edge of Impure Gallium Arsenide,” Phys. Rev. 140(6A), A2059–A2065 (1965).
[Crossref]

Afromowitz, M. A.

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Allen, J. S. J.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Alton, J.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

Andrews, A. M.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Barbieri, S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

Becker, C.

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

Beere, H. E.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belyanin, A.

Berger, V.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Bois, P.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Carter, S. G.

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

Cavalie, P.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Cavalié, P.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

Chen, L.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Ciulin, V.

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

Cockburn, J. W.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Coldren, L.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

Coldren, L. A.

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

Colombelli, R.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

Cui, A. G.

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

Davies, A. G.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

de Rossi, A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

Dean, P.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Dhillon, S. S.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[PubMed]

Ding, Y. J.

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

Ernsting, I.

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Fiore, A.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Freeman, J.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

Freeman, J. R.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Frogley, M. D.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Gérard, B.

Gkortsas, V. M.

Glastre, G.

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Gossard, A. C.

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

Grant, P.

Grisard, A.

Haffouz, S.

Ham, D.

Han, S.

Hansen, M. G.

Hanson, M.

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

Helm, M.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Hopkinson, M.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Huntington, A.

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Inoshita, T.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Jukam, N.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Kärtner, F. X.

Katzer, D. S.

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

Khurgin, J.

J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B Condens. Matter 38(6), 4056–4066 (1988).
[Crossref] [PubMed]

Khurgin, J. B.

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

Ko, J.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kono, J.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Kundys, D. O.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Kuznetsova, L.

Lallier, E.

Li, L.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

Li, X.

Linfield, E. H.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

Liu, R. B.

B. Zaks, R. B. Liu, and M. S. Sherwin, “Experimental observation of electron-hole recollisions,” Nature 483(7391), 580–583 (2012).
[Crossref] [PubMed]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Madéo, J.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Maussang, K.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Maysonnave, J.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Nagle, J.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Noda, T.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Oh, K.

Ortiz, V.

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

Page, H.

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

Pankove, J. I.

J. I. Pankove, “Absorption Edge of Impure Gallium Arsenide,” Phys. Rev. 140(6A), A2059–A2065 (1965).
[Crossref]

Park, C.

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Phillips, C.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

Phillips, C. C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Ritchie, D. A.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Robertson, A.

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

Roch, T.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Rosencher, E.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Sakaki, H.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Saxena, A. K.

A. K. Saxena, “Electron mobility in Ga(1-x)Al(x)As alloys,” Phys. Rev. B 24(6), 3295–3302 (1981).
[Crossref]

Schartner, S.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Schiller, S.

Schneider, H.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[PubMed]

Sherwin, M. S.

B. Zaks, R. B. Liu, and M. S. Sherwin, “Experimental observation of electron-hole recollisions,” Nature 483(7391), 580–583 (2012).
[Crossref] [PubMed]

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Shin, W.

Sirtori, C.

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Skolnick, M. S.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Song, C. Y.

Strasser, G.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Strupiechonski, E.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

Su, M. Y.

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Tignon, J.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Valavanis, A.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Vasilyev, S. V.

Veliadis, J. V. D.

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vinter, B.

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Wagner, M.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Wang, C. Y.

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

Wasilewski, Z. R.

Wilson, L. R.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Winnerl, S.

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

Xu, G.

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

Zaks, B.

B. Zaks, R. B. Liu, and M. S. Sherwin, “Experimental observation of electron-hole recollisions,” Nature 483(7391), 580–583 (2012).
[Crossref] [PubMed]

Zervos, C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

Zhu, J.

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Appl. Phys. Lett. (7)

M. Wagner, H. Schneider, S. Winnerl, M. Helm, T. Roch, A. M. Andrews, S. Schartner, and G. Strasser, “Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 94(24), 241105 (2009).
[Crossref]

S. G. Carter, V. Ciulin, M. S. Sherwin, M. Hanson, A. Huntington, L. A. Coldren, and A. C. Gossard, “Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room-temperature operation,” Appl. Phys. Lett. 84(6), 840–842 (2004).
[Crossref]

C. Phillips, M. Y. Su, M. S. Sherwin, J. Ko, and L. Coldren, “Generation of first-order terahertz optical sidebands in asymmetric coupled quantum wells,” Appl. Phys. Lett. 75(18), 2728–2730 (1999).
[Crossref]

P. Cavalié, J. Freeman, K. Maussang, E. Strupiechonski, G. Xu, R. Colombelli, L. Li, A. G. Davies, E. H. Linfield, J. Tignon, and S. S. Dhillon, “High order sideband generation in terahertz quantum cascade lasers,” Appl. Phys. Lett. 102(22), 221101 (2013).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
[Crossref]

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, J. W. Cockburn, M. Hopkinson, and M. S. Skolnick, “Coherent near-infrared wavelength conversion in semiconductor quantum cascade lasers,” Appl. Phys. Lett. 89(18), 183507 (2006).
[Crossref]

H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori, “300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm,” Appl. Phys. Lett. 78(22), 3529–3531 (2001).
[Crossref]

Electron. Lett. (1)

A. Valavanis, J. Zhu, J. Freeman, L. Li, L. Chen, A. G. Davies, E. H. Linfield, and P. Dean, “Terahertz quantum cascade lasers with >1 W output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Nat. Photonics (2)

J. Madéo, P. Cavalie, J. R. Freeman, N. Jukam, J. Maysonnave, K. Maussang, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Tignon, and S. S. Dhillon, “All-optical wavelength shifting in a semiconductor laser using resonant nonlinearities,” Nat. Photonics 6(8), 519–524 (2012).
[Crossref]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, “Terahertz transfer onto a telecom optical carrier,” Nat. Photonics 1(7), 411–415 (2007).
[Crossref]

Nature (3)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

B. Zaks, R. B. Liu, and M. S. Sherwin, “Experimental observation of electron-hole recollisions,” Nature 483(7391), 580–583 (2012).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Eng. (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Opt. Express (3)

Phys. Rev. (1)

J. I. Pankove, “Absorption Edge of Impure Gallium Arsenide,” Phys. Rev. 140(6A), A2059–A2065 (1965).
[Crossref]

Phys. Rev. B (1)

A. K. Saxena, “Electron mobility in Ga(1-x)Al(x)As alloys,” Phys. Rev. B 24(6), 3295–3302 (1981).
[Crossref]

Phys. Rev. B Condens. Matter (2)

J. Khurgin, “Second-order nonlinear effects in asymmetric quantum-well structures,” Phys. Rev. B Condens. Matter 38(6), 4056–4066 (1988).
[Crossref] [PubMed]

J. V. D. Veliadis, J. B. Khurgin, Y. J. Ding, A. G. Cui, and D. S. Katzer, “Investigation of the photoluminescence-linewidth broadening in periodic multiple narrow asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 50(7), 4463–4469 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, J. S. J. Allen, and H. Sakaki, “Resonant Terahertz Optical Sideband Generation from Confined Magnetoexcitons,” Phys. Rev. Lett. 79(9), 1758–1761 (1997).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

E. Rosencher, A. Fiore, B. Vinter, V. Berger, P. Bois, and J. Nagle, “Quantum Engineering of Optical Nonlinearities,” Science 271(5246), 168–173 (1996).
[Crossref]

Solid State Commun. (1)

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15(1), 59–63 (1974).
[Crossref]

Other (4)

H. Yoshida, T. Mozume, T. Nishimura, and O. Wada, “Ultrafast intersubband transitions in InGaAs/AlAs coupled double quantum well structures for near-infrared all-optical switching,” in Lasers and Electro-Optics Society Annual Meeting,1997. LEOS '97 10th Annual Meeting. Conference Proceedings., IEEE, 1997), 441–442 vol.442.
[Crossref]

R. Boyd, Nonlinear Optics, 3rd Edition, (Elsevier, 2008).

G. Bastard, Wave mechanics applied to semiconductor heterostructures (Les Éditions de Physique, 1988).

R. L. Sutherland, Handbook of Nonlinear Optics (Taylor & Francis, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagrams showing a single and a double resonant nonlinear process (b) Schematic diagram of a MIR QCL showing the resonant nonlinear process for sideband generation (ENIR - EQCL), represented in three quantum wells for clarity. The QCL is operating at EQCL (green wavy arrow between upper state E3 and lower state E2). The lower state E2 is depopulated by LO-phonons to electron state E1. A NIR pump (ENIR, blue arrow) is tuned in resonance with the interband transitions. This results in the generation of a lower-energy beam (red arrow) at ENIR - EQCL. (c) Schematic of collinear geometry with the input excitation coupled into one facet of the QCL and the sideband exiting the opposite facet.

Fig. 2
Fig. 2

Intensity profiles of the MIR QCL mode at 9.2 µm (green line) and the NIR modes at 800 nm (red lines). The right axes show the NIR refractive index of the layers (dark blue line). (a) Conventional plasmon enhanced MIR waveguide with GaAs cladding layers (C1 doped at 6 × 1018 cm−3 and C2 doped at 8 × 1016 cm−3) around the AR. (b) Modified Al-enhanced MIR waveguide with the additional Al0.25Ga0.75As layers (C3) around the AR to confine the NIR mode in the AR. C3 is doped at 1 × 1017 cm−3. C1 is identical to (a) whilst C2 is GaAs doped at 1 × 1018 cm−3.

Fig. 3
Fig. 3

Sideband spectrum measured with the QCL at a temperature of 210K. The NIR excitation beam is at 1.61 eV, above the effective bandgap, Eg, and the generated sideband is observed at 1.475 eV, separated from the NIR beam by exactly the MIR QCL energy (135 meV). The inset shows an expanded view of the generated sideband. The top axis of the inset is the calculated MIR spectral range (ENIR-Esideband).

Fig. 4
Fig. 4

(a) Integrated sideband intensity as a function of NIR pump energy (black dots). The dashed curve corresponds to a lorentzian fit to the lower energy part (ENIR < 1.61 eV) of the data and an exponential fit for high energies (ENIR > 1.61 eV). The electron-hole overlap integrals of the various transitions within the QCL are plotted as red stars. The right axis (green curve) shows the calculated |χ(2)|2 from [Eq. (3)]. (b) QCL band structure, showing the valence and conduction bands and the squares of the main wavefunctions. The principal states involved in the nonlinear interaction are the electron states E1 and E2 and light hole states LH1 and LH2. E3 (red) is the upper state of the QCL transition and E2 (blue) is the lower state from which electrons relax to state E1 (pink) by a LO phonon transition.

Fig. 5
Fig. 5

Integrated spectra of each sideband as a function of temperature up to 295 K (black squares) compared with the QCL output power (red squares). Inset: Light-current characteristics for different temperatures.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ single (2) 1 E a Δ E 12 i Γ 12   1 Γ 12
χ double (2) 1 ( E a Δ E 13 i Γ 13 )   1 ( E b Δ E 12 i Γ 12 )   1 Γ 13 Γ 12
χ ( 2 ) = N H ε 0 μ H E 1 μ E 1 E 2 μ E 2 H ( E sideband Δ E H E 1 i Γ H E 1 )( E NIR Δ E H E 2 i Γ H E 2 )
I sideband | χ ( 2 ) | 2 1 ( E NIR E 0 ) 2 Γ²
η= P sideband P NIR = 8 π 2 P QCL L 2 ε 0 n NIR n QCL n sideband cS λ sideband 2 | χ (2) | 2 sin 2 (Δk L 2 )+s h 2 ( α p L 4 ) (Δk L 2 ) 2 + ( α p L 4 ) 2 e α p L 2

Metrics