Abstract

A 220 nm bandwidth supercontinuum source in the two-micron wavelength range has been developed for use in a Fourier domain optical coherence tomography (FDOCT) system. This long wavelength source serves to enhance probing depth in highly scattering material with low water content. We present results confirming improved penetration depth in high opacity paint samples while achieving the high axial resolution needed to resolve individual paint layers. This is the first FDOCT developed in the 2 μm wavelength regime that allows fast, efficient capturing of 3D image cubes at a high axial resolution of 13 μm in air (or 9 μm in paint).

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, "High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source: erratum," Opt. Express 23, 22953-22953 (2015)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-17-22953

OSA Recommended Articles
En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation

Haida Liang, Marta Gomez Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, Justin Pedro, and David Saunders
Opt. Express 13(16) 6133-6144 (2005)

Speckle noise reduction in optical coherence tomography of paint layers

Michael Hughes, Marika Spring, and Adrian Podoleanu
Appl. Opt. 49(1) 99-107 (2010)

Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies

Desmond C. Adler, Jens Stenger, Iwona Gorczynska, Henry Lie, Teri Hensick, Ron Spronk, Stephan Wolohojian, Narayan Khandekar, James Y. Jiang, Scott Barry, Alex E. Cable, Robert Huber, and James G. Fujimoto
Opt. Express 15(24) 15972-15986 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  3. H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
    [Crossref] [PubMed]
  4. H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
    [Crossref]
  5. P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phy. A 106(2), 265–277 (2012).
    [Crossref]
  6. H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
    [Crossref]
  7. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
    [Crossref] [PubMed]
  8. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref] [PubMed]
  9. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
    [Crossref] [PubMed]
  10. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5(3), 932–943 (2014).
    [Crossref] [PubMed]
  11. C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
    [Crossref]
  12. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
    [Crossref] [PubMed]
  13. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [Crossref]
  14. J. M. O. Daniel and W. A. Clarkson, “Bandwidth-Controllable Tunable Q-Switched Thulium Fibre Laser,” European Conference on Lasers and Electro-Optics, CJ-10.2 THU (2013).
    [Crossref]
  15. J. M. Dudley and J. R. Taylor, eds., “Supercontinuum generation in optical fibers,” (Cambridge University Press, 2010).
  16. A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
    [Crossref]
  17. A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).
  18. N. Nishizawa, “Generation and application of high quality supercontinuum sources,” Opt. Fiber Technol. 18(5), 394–402 (2012).
    [Crossref]

2014 (2)

2013 (2)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

2012 (3)

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phy. A 106(2), 265–277 (2012).
[Crossref]

N. Nishizawa, “Generation and application of high quality supercontinuum sources,” Opt. Fiber Technol. 18(5), 394–402 (2012).
[Crossref]

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
[Crossref] [PubMed]

2008 (2)

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
[Crossref] [PubMed]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

2007 (2)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

2005 (1)

1998 (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

1995 (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Aramaki, M.

Bouma, B. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Breuer, E.

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Brezinski, M. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Brookes, A.

A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
[Crossref]

Chang, E. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cheung, C. S.

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

Cid, M. G.

Clarkson, W. A.

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

Cucu, R. G.

Daniel, J. M. O.

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

Dobre, G. M.

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Fercher, A.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Góra, M.

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hackney, S.

A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hughes, M.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Ishida, S.

Iwanicka, M.

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phy. A 106(2), 265–277 (2012).
[Crossref]

Jones, D. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Kataura, H.

Kawagoe, H.

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Lerwill, A.

A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
[Crossref]

Liang, H.

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
[Crossref] [PubMed]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Nelson, L. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Nishizawa, N.

Omoda, E.

Pedro, J.

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Podoleanu, A.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face Optical Coherence Tomography - a novel application of non-invasive imaging to art conservation,” Opt. Express 13(16), 6133–6144 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Roehrs, S.

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Rouba, B.

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Sakakibara, Y.

Saunders, D.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sharma, U.

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Targowska, M.

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Targowski, P.

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phy. A 106(2), 265–277 (2012).
[Crossref]

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

Tearney, G. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Tokurakawa, M.

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2-μm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
[Crossref] [PubMed]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

Townsend, J.

A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
[Crossref]

Yun, S. H.

Appl. Phy. A (1)

P. Targowski and M. Iwanicka, “Optical Coherence Tomography for structural examination of cultural heritage objects and monitoring of restoration processes – a review,” Appl. Phy. A 106(2), 265–277 (2012).
[Crossref]

Appl. Phys. B (2)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Biomed. Opt. Express (2)

In Lasers in the Conservation of Artworks, Springer proceedings in Physics. (1)

A. Szkulmowska, M. Góra, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, “Applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings,” In Lasers in the Conservation of Artworks, Springer proceedings in Physics. 116, 487–492 (2007).

J. Biomed. Opt. (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

N. Nishizawa, “Generation and application of high quality supercontinuum sources,” Opt. Fiber Technol. 18(5), 394–402 (2012).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

H. Liang, B. Peric, M. Hughes, A. Podoleanu, M. Spring, and S. Roehrs, “Optical Coherence Tomography in Archaeology and Conservation Science – A new emerging field,” Proc. SPIE 7139, 713915 (2008).
[Crossref]

C. S. Cheung, M. Tokurakawa, J. M. O. Daniel, W. A. Clarkson, and H. Liang, “Long wavelength optical coherence tomography for painted objects,” Proc. SPIE 8790, 87900J (2013).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

J. M. O. Daniel and W. A. Clarkson, “Bandwidth-Controllable Tunable Q-Switched Thulium Fibre Laser,” European Conference on Lasers and Electro-Optics, CJ-10.2 THU (2013).
[Crossref]

J. M. Dudley and J. R. Taylor, eds., “Supercontinuum generation in optical fibers,” (Cambridge University Press, 2010).

A. Lerwill, A. Brookes, J. Townsend, S. Hackney, and H. Liang, “Micro-fading spectrometry: investigating the wavelength specificity of fading,” Appl. Phys. A Mater. Sci. Process. (2015), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental layout of the supercontinuum source. AOM: acousto optic modulator. TDF: thulium doped fibre. WDM: wavelength division multiplexer. HNLF: highly nonlinear fibre.
Fig. 2
Fig. 2 Schematic diagram of Fourier domain OCT at 2 microns
Fig. 3
Fig. 3 a) Spectrum of the supercontinuum source output after spectral filtering with an un-pumped section of thulium doped fiber; b) OCT depth profile through a glass surface; the red curve is a Gaussian of 13 μm FWHM and the blue crosses are measured values.
Fig. 4
Fig. 4 a) Color image of smalt (left) and yellow ochre (right) in linseed oil painted on a Teflon board prepared with a ground layer of chalk in rabbit skin glue; there is a thin mastic varnish layer on top of the paint layers; b) 930nm FDOCT B-Scan in the region marked with a red line segment in a); the very faint line above the brightest interface is a sidelobe artefact; c) high resolution 1960nm FDOCT B-Scan at roughly the same position. B-Scan image sizes are 7 mm wide by 0.8 mm deep.
Fig. 5
Fig. 5 a) Color image of a paint sample consisting of two bottom layers of a mixture of malachite, lead white and buckthorn lake paint followed by a glaze layer of copper resinate on top. Bone black in gum Arabic underdrawings were brushed on the substrate below the paint layers; b) FLIR SC7600 InSb camera direct image of the paint sample in the 1500-1650nm spectral range; c) FLIR SC7600 InSb camera direct image in the 1500-2500nm spectral range; d) 1960nm OCT ‘en face’ image through averaging those ‘en face’ layers with underdrawing signals. Image sizes are 7 mm by 10 mm.
Fig. 6
Fig. 6 a) Spectra of the SC source through a 40nm band pass filter (blue dotted) and the ASE source (red) reflected back from the reference arm; b) A-scan of a microscope coverslip using the two sources with the same FDOCT setup (‘A’ is the top air/coverslip interface, ‘B’ is the artefact due to interference between the top and the bottom of the coverslip, ‘C’ is the bottom of the coverslip, ‘D’ is the interference between the top of the coverslip and the 2nd reflection from the bottom of the coverslip after reflecting back once from the top interface); c) B-scan image of around the region of the paint sample in Fig. 4(a) marked in red using the SC source with the 40nm bandpass filter; d) same as c) but using the ASE source. The images in c) and d) are 7mm (width) by 0.8 mm (height).

Metrics