Abstract

We propose an optoelectronic subsystem for inline compensation of XPM-induced phase noise in long-haul optical links. Based on intensity-dependent phase rotation, these compensators are used to suppress XPM on a span-by-span basis. Using a 7-channel hybrid WDM system as a test case, our simulations show that this technique is effective at suppressing XPM in dispersion managed and unmanaged links for various transmission distances.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  2. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  3. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
    [Crossref] [PubMed]
  4. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
    [Crossref] [PubMed]
  5. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [Crossref]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 3 ed., Optics and Photonics (Academic Press, 2001).
  7. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Shohler, G.-D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
    [Crossref]
  8. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
    [Crossref]
  9. R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  10. L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
    [Crossref]
  11. E. Ip and J. M. Khan, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  12. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightwave Technol. 29(17), 2570–2576 (2011).
    [Crossref]
  13. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [Crossref] [PubMed]
  14. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [Crossref]
  15. G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
    [Crossref]
  16. X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
    [Crossref]
  17. C. Xie, “Suppression of inter-channel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in European Conference on Optical Communication, (Vienna, Austria, 2009), P4.08.
  18. H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. J. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” in Optical Fiber Communication Conference, (San Francisco, CA, Optical Society of America, 2014), M2C.2.
    [Crossref]
  19. S. Olsson, L. I. C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in European Conference on Optical Communication, (Cannes, France, 2014), PD.2.2.
  20. C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27(18), 1619–1621 (2002).
    [Crossref] [PubMed]
  21. K. Kikuchi, “Electronic post-compensation for nonlinear phase fluctuations in a 1000-km 20-Gbit/s optical quadrature phase-shift keying transmission system using the digital coherent receiver,” Opt. Express 16(2), 889–896 (2008).
    [Crossref] [PubMed]
  22. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
    [Crossref] [PubMed]
  23. L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
    [Crossref]
  24. L. Du and A. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” in Optical Fiber Communication Conference, (Los Angeles, CA, Optical Society of America, 2011), OWW2.
    [Crossref]
  25. L. Du and A. Lowery, “Compensating XPM for 100 Gbit/s coherent channels with 10 Gbit/s direct-detection NRZ neighbors,” in Optical Fiber Communication Conference, (San Diego, CA, Optical Society of America, 2010), OTuE7.
    [Crossref]
  26. T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996).
    [Crossref]
  27. Z. Tao, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “A simplified model for nonlinear cross-phase modulation in hybrid optical coherent system,” Opt. Express 17(16), 13860–13868 (2009).
    [Crossref] [PubMed]
  28. S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photon. Technol. Lett. 19(22), 1801–1803 (2007).
    [Crossref]
  29. C. R. Menyuk and B. S. Marks, “Interaction of polarization mode dispersion and nonlinearity in optical fiber transmission systems,” J. Lightwave Technol. 24(7), 2806–2826 (2006).
    [Crossref]

2014 (1)

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

2013 (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

2011 (2)

2010 (5)

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[Crossref]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[Crossref]

2009 (1)

2008 (4)

2007 (2)

A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
[Crossref] [PubMed]

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photon. Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

2006 (2)

2005 (1)

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

2002 (1)

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

2000 (1)

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

1996 (1)

T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996).
[Crossref]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

S. Olsson, L. I. C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in European Conference on Optical Communication, (Cannes, France, 2014), PD.2.2.

Barros, D. J. F.

Bellotti, G.

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

Bigo, S.

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Calabro, S.

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photon. Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

Chiang, T.-K.

T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996).
[Crossref]

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Cortès, P.-Y.

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

Cotter, D.

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

de Waardt, H.

Dou, L.

Du, L. B.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[Crossref]

Ellis, A. D.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[Crossref]

Essiambre, R.-J.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
[Crossref] [PubMed]

Fishman, D. A.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Foschini, G. J.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
[Crossref] [PubMed]

Gauchard, S.

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

Gruner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Herstrom, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Hoshida, T.

Ip, E.

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Jansen, S. L.

Kagi, N.

T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996).
[Crossref]

Kahn, J. M.

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Karlsson, M.

S. Olsson, L. I. C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in European Conference on Optical Communication, (Cannes, France, 2014), PD.2.2.

Kazovsky, L. G.

T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996).
[Crossref]

Khan, J. M.

Khoe, G.-D.

Kikuchi, K.

Kramer, G.

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
[Crossref] [PubMed]

Krummrich, P. M.

Kuschnerov, M.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

LaRochelle, S.

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

Lau, A. P. T.

Li, L.

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photon. Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

C. Xu and X. Liu, “Postnonlinearity compensation with data-driven phase modulators in phase-shift keying transmission,” Opt. Lett. 27(18), 1619–1621 (2002).
[Crossref] [PubMed]

Lowery, A.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

Lowery, A. J.

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[Crossref]

A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
[Crossref] [PubMed]

Lundstrom, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Lundstrom, L. I. C.

S. Olsson, L. I. C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in European Conference on Optical Communication, (Cannes, France, 2014), PD.2.2.

Marhic, M. E.

T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, “Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 14(3), 249–260 (1996).
[Crossref]

Marks, B. S.

Menyuk, C. R.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

Napoli, A.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Oda, S.

Olsson, S.

S. Olsson, L. I. C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in European Conference on Optical Communication, (Cannes, France, 2014), PD.2.2.

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Rafique, D.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

Rasmussen, J. C.

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

Shohler, W.

Sjodin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Spinnler, B.

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Shohler, G.-D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[Crossref]

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

Suche, H.

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Tao, Z.

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

van den Borne, D.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Wei, X.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Winzer, P. J.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
[Crossref] [PubMed]

Xie, C.

C. Xie, “Suppression of inter-channel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in European Conference on Optical Communication, (Vienna, Austria, 2009), P4.08.

Xu, C.

Yan, W.

Ying, J.

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

Zhao, J.

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (4)

G. Bellotti, S. Bigo, P.-Y. Cortès, S. Gauchard, and S. LaRochelle, “10 × 10 Gb/s cross-phase modulation suppressor for multispan transmissions using WDM narrow-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(10), 1403–1405 (2000).
[Crossref]

X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmission with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17(9), 1980–1982 (2005).
[Crossref]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[Crossref]

S. Chandrasekhar and X. Liu, “Impact of channel plan and dispersion map on hybrid DWDM transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz grid,” IEEE Photon. Technol. Lett. 19(22), 1801–1803 (2007).
[Crossref]

IEEE Signal Process. Mag. (1)

L. B. Du, D. Rafique, A. Napoli, B. Spinnler, A. D. Ellis, M. Kuschnerov, and A. Lowery, “Digital fiber nonlinearity compensation: towards 1Tb/s transport,” IEEE Signal Process. Mag. 31(2), 46–56 (2014).
[Crossref]

J. Lightwave Technol. (7)

Nat. Photonics (2)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Nature (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature 411(6841), 1027–1030 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
[Crossref] [PubMed]

Other (6)

G. P. Agrawal, Nonlinear Fiber Optics, 3 ed., Optics and Photonics (Academic Press, 2001).

C. Xie, “Suppression of inter-channel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in European Conference on Optical Communication, (Vienna, Austria, 2009), P4.08.

H. Hu, R. M. Jopson, A. H. Gnauck, M. Dinu, S. Chandrasekhar, X. Liu, C. Xie, M. Montoliu, S. Randel, and C. J. McKinstrie, “Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations,” in Optical Fiber Communication Conference, (San Francisco, CA, Optical Society of America, 2014), M2C.2.
[Crossref]

S. Olsson, L. I. C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in European Conference on Optical Communication, (Cannes, France, 2014), PD.2.2.

L. Du and A. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” in Optical Fiber Communication Conference, (Los Angeles, CA, Optical Society of America, 2011), OWW2.
[Crossref]

L. Du and A. Lowery, “Compensating XPM for 100 Gbit/s coherent channels with 10 Gbit/s direct-detection NRZ neighbors,” in Optical Fiber Communication Conference, (San Diego, CA, Optical Society of America, 2010), OTuE7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Generalized block diagram for TID-PM subsystem. PM: Phase modulator; OA: Optical amplifier. Blue lines represent electrical connections and black lines represent optical connections.

Fig. 2
Fig. 2

XPM efficiency due to walk-off for: (a) a dispersion unmanaged 20-span 1600-km link and (b) a single 80-km span for 50 GHz spacing. The fiber is assumed to have 16 ps/nm.km dispersion.

Fig. 3
Fig. 3

Block diagram of (a) canonical TID-PM and (b) practical TID-PM. PM: Phase modulator; LPF: Low pass filter; Demux: WDM de-multiplexer; OADM: Optical add-drop multiplexer; OA: Optical amplifier; RF gain: electrical gain. Blue lines represent electrical connections and black lines represent optical connections.

Fig. 4
Fig. 4

(a) System block diagram for 2-channel canonical TID-PM, and (b) the response, HXPM(ω), applied by the low-pass filter to account for walk-off. OADM: optical add/drop multiplexer; PM: phase modulator; LPF: low-pass filter; OA: optical amplifier; RF gain: electrical gain.

Fig. 5
Fig. 5

Phase of CW probe at receiver (a) without and (b) with TID-PM.

Fig. 6
Fig. 6

Phase noise spectra for the received phase on the CW probe after an 80-km span of fiber.

Fig. 7
Fig. 7

System block diagram of 1600-km link used to investigate inline TID-PM performance for (a) 0% RDPS and (b) 100% RDPS. The link with 10% RDPS used a combination of inline and end-span DCF.

Fig. 8
Fig. 8

Phase noise spectra for the received phase on the CW probe after a twenty-span 1600-km link for (a) a link with 0% RDPS, (b) a link with 10% RDPS and (c) a link with 100% RDPS. A resolution bandwidth of 1 GHz is used.

Fig. 9
Fig. 9

Q vs. launch power for the QPSK channel for 0% RDPS (squares) 10% RDPS (diamonds) and 100% RDPS (triangles) in a 1600-km. link Closed markers (solid lines) are links without nonlinearity compensation and open markers (dashed lines) are links using inline TID-PMs. Inset: constellation obtained at a launch power of −4 dBm for the 0% RDPS map when TID-PMs are not used.

Fig. 10
Fig. 10

System block diagram for 7-channel WDM transmission with (a) inline TID-PMs for XPM compensation and (b) a single TID-PM used to post-compensate XPM.

Fig. 11
Fig. 11

HXPM(ω) as used in (a) all inline practical TID-PMs and (b) the post-compensating practical TID-PM for a 1600-km link. The HXPM(ω) used in the post-compensating TID-PM for a 3200-km link had the same shape, but with a passband reduced to 100 MHz.

Fig. 12
Fig. 12

Q vs. launch power of the center QPSK channel after a) 1600-km and b) 3200km transmission. Closed markers (solid lines) are Q from BER and open markers (dashed lines) are Q from EVM.

Fig. 13
Fig. 13

System diagram for 3200-km dispersion unmanaged link.

Fig. 14
Fig. 14

Q vs. launch power after 3200-km transmission for uncompensated (square markers), post-compensated (circular markers) and inline TID-PM (triangular markers) systems. Closed markers (solid lines) are the dispersion-managed link and open markers (dashed lines) are the dispersion-unmanaged link.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ TIDPM (t)=2γ L eff S( t )
S(t)= h XPM (t)P(t)
η XPM (ω)= α 2 (ωΔβ) 2 + α 2 [ 1+ 4 sin 2 ( ωΔβL 2 ) e αL (1 e αL ) 2 ]| sin( NωΔβL 2 ) sin( ωΔβL 2 ) |
φ(ω)=arg(α+iωΔβ)+arg[ (1 e αL ω 0 (ωΔβL))+i e αL sin(ωΔβL) ].
H XPMOpt ( ω )= η XPM ( ω ) exp( jφ( ω ) ).

Metrics