Abstract

We use a 2D drift-diffusion model to study the nonlinear response of a partially depleted absorber (PDA) phododetector. The model includes external loading, incomplete ionization, the Franz-Keldysh effect, and history-dependent impact ionization. It also takes into account heat flow in the device. With all these effects included, we obtain excellent agreement with experiments for the responsivity and for the harmonic power at different modulation frequencies. The role of these different physical effects is elucidated, and we find that both the Franz-Keldysh effect and the load resistance play a key role in generating higher harmonic power at larger reverse biases. Increasing the size of the p-region absorption layers reduces the impact of the Franz-Keldysh effect. Decreasing the effective load resistance also decreases the higher harmonic powers. We also show that the model can suggest design changes that will improve device performance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency dependent harmonic powers in a modified uni-traveling carrier photodetector

Yue Hu, Curtis R. Menyuk, Meredith N. Hutchinson, Vincent J. Urick, and Keith J. Williams
Opt. Lett. 42(5) 919-922 (2017)

Impact of the Coulomb interaction on the Franz–Keldysh effect in high-current photodetectors

Yue Hu, Curtis R. Menyuk, Meredith N. Hutchinson, Vincent J. Urick, and Keith J. Williams
Opt. Lett. 41(3) 456-459 (2016)

Si/Ge uni-traveling carrier photodetector

Molly Piels and John E. Bowers
Opt. Express 20(7) 7488-7495 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
    [Crossref]
  2. Y. Hu, C. Menyuk, V. Urick, and K. Williams, “Sources of nonlinearity in a pin photodetector at high applied reverse bias,” in 2013 International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2013), pp. 282–285.
    [Crossref]
  3. Y. Hu and C. Menyuk, “Computational modeling of nonlinearity in a pin photodetector,” in 2013 International Semiconductor Device Research Symposium (ISDRS, 2013), pp. 1–2.
  4. Y. Hu, B. Marks, C. Menyuk, V. Urick, and K. Williams, “Modeling sources of nonlinearity in a simple p-i-n photodetector,” J. Lightwave Technol. 32, 3710–3720 (2014).
    [Crossref]
  5. D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
    [Crossref]
  6. A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photonics Technol. Lett. 21, 1642–1644 (2009).
    [Crossref]
  7. A. S. Hastings, D. A. Tulchinsky, K. J. Williams, H. Pan, A. Beling, and J. C. Campbell, “Minimizing photodiode nonlinearities by compensating voltage-dependent responsivity effects,” J. Lightwave Technol. 28, 3329–3333 (2010).
  8. R. Mcintyre, “A new look at impact ionization-part I: A theory of gain, noise, breakdown probability, and frequency response,” IEEE Trans. Electron Devices,  46, 1623–1631 (1999).
    [Crossref]
  9. P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
    [Crossref]
  10. Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
    [Crossref]
  11. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
  12. D. C. Cole and J. Johnson, “Accounting for incomplete ionization in modeling silicon based semiconductor devices,” in Proceedings of the Workshop on Low Temperature Semiconductor Electronics (IEEE, 1989), pp. 73–77.
    [Crossref]
  13. F. Pfirsch and M. Ruff, “Note on charge conservation in the transient semiconductor equations,” IEEE Trans. Electron Devices 40, 2085–2087 (1993).
    [Crossref]
  14. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, 2007).
  15. V. Palankovski, “Simulation of heterojunction bipolar transistors,” PhD Dissertation, Technische Universität Wien, Viena, Austria (2000).
  16. M. Wagner, “Simulation of thermoelectric devices,” PhD Dissertation, Technische Universität Wien, Viena, Austria (2007).
  17. M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
    [Crossref]
  18. R. Quay, “Analysis and simulation of high electron mobility transistors,” PhD dissertation, Technische Universität Wien, Viena, Austria (2001).
  19. R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
    [Crossref]
  20. J. Callaway, “Optical absorption in an electric field,” Phys. Rev. 130, 549–553 (1963).
    [Crossref]
  21. K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
    [Crossref]
  22. K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
    [Crossref]
  23. P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
    [Crossref]
  24. M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
    [Crossref]
  25. M. N. Draa, A. S. Hastings, and K. J. Williams, “Comparison of photodiode nonlinearity measurement systems,” Opt. Express 19, 12635–12645 (2011).
    [Crossref] [PubMed]
  26. K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2206 (1963).
    [Crossref]

2014 (1)

2011 (2)

M. N. Draa, A. S. Hastings, and K. J. Williams, “Comparison of photodiode nonlinearity measurement systems,” Opt. Express 19, 12635–12645 (2011).
[Crossref] [PubMed]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

2010 (1)

2009 (1)

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photonics Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

2004 (1)

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

2001 (1)

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

2000 (3)

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[Crossref]

R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
[Crossref]

1999 (2)

R. Mcintyre, “A new look at impact ionization-part I: A theory of gain, noise, breakdown probability, and frequency response,” IEEE Trans. Electron Devices,  46, 1623–1631 (1999).
[Crossref]

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

1998 (1)

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

1995 (1)

K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
[Crossref]

1993 (1)

F. Pfirsch and M. Ruff, “Note on charge conservation in the transient semiconductor equations,” IEEE Trans. Electron Devices 40, 2085–2087 (1993).
[Crossref]

1963 (2)

J. Callaway, “Optical absorption in an electric field,” Phys. Rev. 130, 549–553 (1963).
[Crossref]

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2206 (1963).
[Crossref]

Anselm, K.

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Anselm, K.A.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

Beling, A.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

A. S. Hastings, D. A. Tulchinsky, K. J. Williams, H. Pan, A. Beling, and J. C. Campbell, “Minimizing photodiode nonlinearities by compensating voltage-dependent responsivity effects,” J. Lightwave Technol. 28, 3329–3333 (2010).

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Bowers, J. E.

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Callaway, J.

J. Callaway, “Optical absorption in an electric field,” Phys. Rev. 130, 549–553 (1963).
[Crossref]

Campbell, J.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Campbell, J. C.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

A. S. Hastings, D. A. Tulchinsky, K. J. Williams, H. Pan, A. Beling, and J. C. Campbell, “Minimizing photodiode nonlinearities by compensating voltage-dependent responsivity effects,” J. Lightwave Technol. 28, 3329–3333 (2010).

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Cole, D. C.

D. C. Cole and J. Johnson, “Accounting for incomplete ionization in modeling silicon based semiconductor devices,” in Proceedings of the Workshop on Low Temperature Semiconductor Electronics (IEEE, 1989), pp. 73–77.
[Crossref]

Cowles, J. C.

K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
[Crossref]

Cross, A.

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Demiguel, S.

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

Draa, M. N.

East, J. R.

K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
[Crossref]

Fu, Y.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Haddad, G. I.

K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
[Crossref]

Hansing, C.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

Hastings, A. S.

Hayat, M.

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

Holmes, A.

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

Holmes, A. L.

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

Holmes, J.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

Hu, C.

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Hu, Y.

Y. Hu, B. Marks, C. Menyuk, V. Urick, and K. Williams, “Modeling sources of nonlinearity in a simple p-i-n photodetector,” J. Lightwave Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, C. Menyuk, V. Urick, and K. Williams, “Sources of nonlinearity in a pin photodetector at high applied reverse bias,” in 2013 International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2013), pp. 282–285.
[Crossref]

Y. Hu and C. Menyuk, “Computational modeling of nonlinearity in a pin photodetector,” in 2013 International Semiconductor Device Research Symposium (ISDRS, 2013), pp. 1–2.

Johnson, J.

D. C. Cole and J. Johnson, “Accounting for incomplete ionization in modeling silicon based semiconductor devices,” in Proceedings of the Workshop on Low Temperature Semiconductor Electronics (IEEE, 1989), pp. 73–77.
[Crossref]

Khalid, A. H.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[Crossref]

Kinsey, G.

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Lenox, C.

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Lenox, C.V.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

Li, N.

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

Li, X.

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

Li, Z.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Marks, B.

Mcintyre, R.

R. Mcintyre, “A new look at impact ionization-part I: A theory of gain, noise, breakdown probability, and frequency response,” IEEE Trans. Electron Devices,  46, 1623–1631 (1999).
[Crossref]

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

Menyuk, C.

Y. Hu, B. Marks, C. Menyuk, V. Urick, and K. Williams, “Modeling sources of nonlinearity in a simple p-i-n photodetector,” J. Lightwave Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, C. Menyuk, V. Urick, and K. Williams, “Sources of nonlinearity in a pin photodetector at high applied reverse bias,” in 2013 International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2013), pp. 282–285.
[Crossref]

Y. Hu and C. Menyuk, “Computational modeling of nonlinearity in a pin photodetector,” in 2013 International Semiconductor Device Research Symposium (ISDRS, 2013), pp. 1–2.

Moglestue, C.

R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, 2007).

Nie, H.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Palankovski, V.

R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
[Crossref]

V. Palankovski, “Simulation of heterojunction bipolar transistors,” PhD Dissertation, Technische Universität Wien, Viena, Austria (2000).

Pan, H.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

A. S. Hastings, D. A. Tulchinsky, K. J. Williams, H. Pan, A. Beling, and J. C. Campbell, “Minimizing photodiode nonlinearities by compensating voltage-dependent responsivity effects,” J. Lightwave Technol. 28, 3329–3333 (2010).

Peters, J.

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Pfirsch, F.

F. Pfirsch and M. Ruff, “Note on charge conservation in the transient semiconductor equations,” IEEE Trans. Electron Devices 40, 2085–2087 (1993).
[Crossref]

Piels, M.

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Quay, R.

R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
[Crossref]

R. Quay, “Analysis and simulation of high electron mobility transistors,” PhD dissertation, Technische Universität Wien, Viena, Austria (2001).

Rezazadeh, A. A.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[Crossref]

Ruff, M.

F. Pfirsch and M. Ruff, “Note on charge conservation in the transient semiconductor equations,” IEEE Trans. Electron Devices 40, 2085–2087 (1993).
[Crossref]

Saleh, B.

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

Saleh, M. A.

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

Selberherr, S.

R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
[Crossref]

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).

Sotirelis, P.

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

Sotoodeh, M.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[Crossref]

Streetman, A.L.B.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

Streetman, B.

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, 2007).

Teich, M.

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

Tharmalingam, K.

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2206 (1963).
[Crossref]

Tulchinsky, D. A.

A. S. Hastings, D. A. Tulchinsky, K. J. Williams, H. Pan, A. Beling, and J. C. Campbell, “Minimizing photodiode nonlinearities by compensating voltage-dependent responsivity effects,” J. Lightwave Technol. 28, 3329–3333 (2010).

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photonics Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

Urick, V.

Y. Hu, B. Marks, C. Menyuk, V. Urick, and K. Williams, “Modeling sources of nonlinearity in a simple p-i-n photodetector,” J. Lightwave Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, C. Menyuk, V. Urick, and K. Williams, “Sources of nonlinearity in a pin photodetector at high applied reverse bias,” in 2013 International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2013), pp. 282–285.
[Crossref]

Wagner, M.

M. Wagner, “Simulation of thermoelectric devices,” PhD Dissertation, Technische Universität Wien, Viena, Austria (2007).

Williams, K.

Y. Hu, B. Marks, C. Menyuk, V. Urick, and K. Williams, “Modeling sources of nonlinearity in a simple p-i-n photodetector,” J. Lightwave Technol. 32, 3710–3720 (2014).
[Crossref]

Y. Hu, C. Menyuk, V. Urick, and K. Williams, “Sources of nonlinearity in a pin photodetector at high applied reverse bias,” in 2013 International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2013), pp. 282–285.
[Crossref]

Williams, K. J.

M. N. Draa, A. S. Hastings, and K. J. Williams, “Comparison of photodiode nonlinearity measurement systems,” Opt. Express 19, 12635–12645 (2011).
[Crossref] [PubMed]

A. S. Hastings, D. A. Tulchinsky, K. J. Williams, H. Pan, A. Beling, and J. C. Campbell, “Minimizing photodiode nonlinearities by compensating voltage-dependent responsivity effects,” J. Lightwave Technol. 28, 3329–3333 (2010).

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photonics Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

Yang, K.

K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
[Crossref]

Yuan, P.

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

Zhou, Q.

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

IEEE J. Quantum Electron. (3)

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Characterizing and modeling nonlinear intermodulation distortions in modified uni-traveling carrier photodiodes,” IEEE J. Quantum Electron. 47, 1312–1319 (2011).
[Crossref]

K. Anselm, H. Nie, C. Hu, C. Lenox, P. Yuan, G. Kinsey, J. Campbell, and B. Streetman, “Performance of thin separate absorption, charge, and multiplication avalanche photodiodes,” IEEE J. Quantum Electron. 34, 482–490 (1998).
[Crossref]

P. Yuan, C. Hansing, K.A. Anselm, C.V. Lenox, H. Nie, J. Holmes, A.L.B. Streetman, and J. Campbell, “Impact ionization characteristics of III–V semiconductors for a wide range of multiplication region thicknesses,” IEEE J. Quantum Electron. 36, 198–204 (2000).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

D. A. Tulchinsky, X. Li, N. Li, S. Demiguel, J. C. Campbell, and K. J. Williams, “High-saturation current wide-bandwidth photodetectors,” IEEE J. Sel. Topics Quantum Electron. 10, 702–708 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photonics Technol. Lett. 21, 1642–1644 (2009).
[Crossref]

IEEE Trans. Electron Devices (5)

K. Yang, J. C. Cowles, J. R. East, and G. I. Haddad, “Theoretical and experimental dc characterization of InGaAs-based abrupt emitter HBT’s,” IEEE Trans. Electron Devices 42, 1047–1058 (1995).
[Crossref]

M. A. Saleh, M. Hayat, P. Sotirelis, A. Holmes, J. C. Campbell, B. Saleh, and M. Teich, “Impact-ionization and noise characteristics of thin III–V avalanche photodiodes,” IEEE Trans. Electron Devices 48, 2722–2731 (2001).
[Crossref]

R. Mcintyre, “A new look at impact ionization-part I: A theory of gain, noise, breakdown probability, and frequency response,” IEEE Trans. Electron Devices,  46, 1623–1631 (1999).
[Crossref]

P. Yuan, K. Anselm, C. Hu, H. Nie, C. Lenox, A. L. Holmes, B. Streetman, J. Campbell, and R. McIntyre, “A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes,” IEEE Trans. Electron Devices 46, 1632–1639 (1999).
[Crossref]

F. Pfirsch and M. Ruff, “Note on charge conservation in the transient semiconductor equations,” IEEE Trans. Electron Devices 40, 2085–2087 (1993).
[Crossref]

J. Appl. Phys. (1)

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[Crossref]

J. Lightwave Technol. (2)

Mater. Sci. Semicond. Process. (1)

R. Quay, C. Moglestue, V. Palankovski, and S. Selberherr, “A temperature dependent model for the saturation velocity in semiconductor materials,” Mater. Sci. Semicond. Process. 3, 149–155 (2000).
[Crossref]

Opt. Express (1)

Phys. Rev. (2)

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2206 (1963).
[Crossref]

J. Callaway, “Optical absorption in an electric field,” Phys. Rev. 130, 549–553 (1963).
[Crossref]

Other (9)

R. Quay, “Analysis and simulation of high electron mobility transistors,” PhD dissertation, Technische Universität Wien, Viena, Austria (2001).

J. C. Campbell, A. Beling, M. Piels, Y. Fu, A. Cross, Q. Zhou, J. Peters, J. E. Bowers, and Z. Li, “High-power, high-linearity photodiodes for rf photonics,” in 2012 Conference on Optoelectronic and Microelectronic Materials and Devices (IEEE, 2012), pp. 215–216.
[Crossref]

Y. Hu, C. Menyuk, V. Urick, and K. Williams, “Sources of nonlinearity in a pin photodetector at high applied reverse bias,” in 2013 International Topical Meeting on Microwave Photonics (MWP), (IEEE, 2013), pp. 282–285.
[Crossref]

Y. Hu and C. Menyuk, “Computational modeling of nonlinearity in a pin photodetector,” in 2013 International Semiconductor Device Research Symposium (ISDRS, 2013), pp. 1–2.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, 2007).

V. Palankovski, “Simulation of heterojunction bipolar transistors,” PhD Dissertation, Technische Universität Wien, Viena, Austria (2000).

M. Wagner, “Simulation of thermoelectric devices,” PhD Dissertation, Technische Universität Wien, Viena, Austria (2007).

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).

D. C. Cole and J. Johnson, “Accounting for incomplete ionization in modeling silicon based semiconductor devices,” in Proceedings of the Workshop on Low Temperature Semiconductor Electronics (IEEE, 1989), pp. 73–77.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Structure of PDA photodetector. Not drawn to scale.

Fig. 2
Fig. 2

The epitaxial structure of the modeled PDA photodetector. The pillar has a diameter of 48 μm, and the base has a diameter of 70 μm. Light is incident from the InP substrate side. Lengths are not to scale.

Fig. 3
Fig. 3

Calculated temperature in the device. The bias is 5 V and the photocurrent is 10 mA.

Fig. 4
Fig. 4

Calculated average temperature in the device. The output photocurrent is 10 mA.

Fig. 5
Fig. 5

Calculated responsivity of the photodetector in our 2D simulation. The blue symbols show the experimental results, and the green curve shows the simulated result. The output photocurrent is 9 mA. The incident light wavelength is 1550 nm.

Fig. 6
Fig. 6

Calculated harmonic powers of the photodetector output power in our 1D and 2D simulations. The symbols show the experimental data for the fundamental, second, and third harmonic powers. The dashed lines show the simulation results. The photocurrent is 10 mA, and the modulation depth is 40%. The modulation frequency is 2 GHz.

Fig. 7
Fig. 7

Calculated harmonic powers of the photodetector output power in our 2D simulations. The symbols show the experimental data for the fundamental, second, and third harmonic powers. The curves show the simulation results. The photocurrent is 10 mA, and the modulation depth is 40%.

Fig. 8
Fig. 8

Calculated harmonic powers of the photodetector output power in our simulations. The symbols show the experimental data for the fundamental, second, and third harmonic powers. The curves show the simulation results. The photocurrent is 10 mA, the modulation depth is 40%, and the modulation frequency is 2 GHz. The green solid curves show the simulation results with the Franz-Keldysh effect (FKE), and the red dashed curves show the simulation results without the Franz-Keldysh effect.

Fig. 9
Fig. 9

Calculated harmonic powers of the photodetector output power in our 2D simulations. The symbols show the experimental data for the fundamental, second, and third harmonic power. The green solid curves show the simulation results when the base has a larger radius (green) and the same radius (red) as the other layers in the device. The photocurrent is 10 mA, the modulation depth is 40%, and the modulation frequency is 2 GHz.

Fig. 10
Fig. 10

(a) The function (1/E)(dE/dz) in the intrinsic region. (b) The electric field distribution in the device in the z-direction.

Fig. 11
Fig. 11

Calculated harmonic powers when we use the impact ionization Eq. (12), which has no history dependence

Fig. 12
Fig. 12

Calculated responsivity of the photodetector in our 2D simulation. The green stars show the experimental results, the blue dash-dot curve shows the simulated result with history-dependent impact ionization, and the red dashed curve shows the simulated result without history-dependent impact ionization. The output current is 9 mA. The incident light wavelength is 1550 nm.

Fig. 13
Fig. 13

Calculated harmonic powers when we double the length of (a) the p-region absorption layers (red dashed curves) and (b) the intrinsic region (red dashed curves). For comparison, we also show the original calculation as green solid curves.

Fig. 14
Fig. 14

Calculated harmonic powers with effective load resistances of 10 and 25 Ω.

Fig. 15
Fig. 15

Calculated harmonic powers when the doping density in the intrinsic region increases from 1 × 105 to 5 × 105 cm−3.

Tables (2)

Tables Icon

Table 1 Material mobility parameters used in the simulation.

Tables Icon

Table 2 Parameters used in the simulation at room temperature.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

( n N D + ) t = G i + G L R ( n , p ) + J n q ,
( p N A ) t = G i + G L R ( n , p ) J p q ,
E = q ε ( N D + + p n N A ) ,
J n = q n v n ( E ) + q D n n ,
J p = q p v p ( E ) q D p p ,
G L = Q α ( ω , E ) exp [ ( ω , E ) ( L ab z ) ] ,
ρ c p T t = ( J n + J p ) E + R E g + [ k ( T ) T ] ,
k ( T ) = k 300 ( T 300 ) α k ,
E g ( T ) = 0.795 4.91 × 10 4 T 2 301 + T .
μ n L = μ n , 300 L ( T / 300 ) r n , μ p L = μ p , 300 L ( T / 300 ) r p .
1 μ AB = x μ A + 1 x μ B + x ( 1 x ) C μ ,
v n , sat ( T ) = v n , sat , 300 ( 1 A n ) + A n T / 300 , v p , sat ( T ) = v p , sat , 300 ( 1 A n ) + A n T / 300 ,
φ n = V a I R load + V bi .
G i = α n | J n | q + α p | J p | q ,
α n ( E ) = 6.64 × 10 7 exp ( 2 × 10 6 / E ) .
α n ( x | x ) = 6.64 × 10 7 exp [ 2 × 10 6 / E eff , e ( x | x ) ] ,
E eff , e ( x | x ) = x x d x E ( x ) R e ( x | x ) .
R e ( x | x ) = 2 π λ e exp [ ( x x ) 2 λ e 2 ] ,
G t ( t ) = G L × [ 1 + m sin ( ω m t ) ] ,
1 l A max | 1 E d E d z | ,
l A = ( 2 2 e μ E ) 1 / 3 .
[ ( 2 / 2 μ ) 2 + | e | E z + F ] Φ ( r ) = 0 ,
1 μ = 1 m h * + 1 m e * .

Metrics