Abstract

A simple single-step method to fabricate spatially graded TiO2-SiO2 Bragg stack with rainbow colored photonic band gap is presented. The gradation in thickness of the Bragg stack was accomplished with a modified glancing angle deposition (GLAD) technique with dynamic shadow enabled by a block attached to one edge of the rotating substrate. A linear gradation in thickness over a distance of about 17 mm resulted in a brilliant colorful rainbow pattern. Interestingly, the photonic band gap position can be changed across the whole visible wavelength range by linearly translating the graded Bragg stack over a large area substrate. The spatially graded Bragg stack may find potential applications in the tunable optical devices, such as optical filters, reflection gratings, and lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  2. I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals (Springer, 2009).
  3. C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
    [Crossref]
  4. Y. J. Zhao, X. W. Zhao, and Z. Z. Gu, “Photonic crystals in bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
    [Crossref]
  5. Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
    [Crossref] [PubMed]
  6. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition,” Opt. Express 14(5), 1951–1956 (2006).
    [Crossref] [PubMed]
  7. M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
    [Crossref]
  8. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
    [Crossref]
  9. L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
    [Crossref]
  10. Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
    [Crossref] [PubMed]
  11. L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
    [Crossref]
  12. S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24(9), 4430–4434 (2008).
    [Crossref] [PubMed]
  13. S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
    [Crossref] [PubMed]
  14. L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
    [Crossref] [PubMed]
  15. I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
    [Crossref]
  16. S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
    [Crossref] [PubMed]
  17. D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
    [Crossref]
  18. Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
    [Crossref]
  19. M. C. Chiappelli and R. C. Hayward, “Photonic multilayer sensors from photo-crosslinkable polymer films,” Adv. Mater. 24(45), 6100–6104 (2012).
    [Crossref] [PubMed]
  20. K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
    [Crossref] [PubMed]
  21. T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
    [Crossref] [PubMed]
  22. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
    [Crossref]
  23. Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
  24. D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
    [Crossref]
  25. D. P. Singh and J. P. Singh, “Delayed freezing of water droplet on silver nanocolumnar thin film,” Appl. Phys. Lett. 102(24), 243112 (2013).
    [Crossref]
  26. S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
    [Crossref] [PubMed]
  27. K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18(20), 3111–3118 (2008).
    [Crossref]

2014 (1)

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

2013 (2)

D. P. Singh and J. P. Singh, “Delayed freezing of water droplet on silver nanocolumnar thin film,” Appl. Phys. Lett. 102(24), 243112 (2013).
[Crossref]

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

2012 (6)

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

M. C. Chiappelli and R. C. Hayward, “Photonic multilayer sensors from photo-crosslinkable polymer films,” Adv. Mater. 24(45), 6100–6104 (2012).
[Crossref] [PubMed]

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

2011 (1)

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

2010 (4)

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Y. J. Zhao, X. W. Zhao, and Z. Z. Gu, “Photonic crystals in bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

2009 (1)

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

2008 (3)

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24(9), 4430–4434 (2008).
[Crossref] [PubMed]

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18(20), 3111–3118 (2008).
[Crossref]

2007 (3)

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[Crossref] [PubMed]

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[Crossref]

2006 (2)

2003 (1)

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Aguirre, C. I.

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Alcaraz, F. J. L.

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Baik, J. M.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Barranco, A.

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

Bonifacio, L. D.

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Breslav, S.

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

Brett, M. J.

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18(20), 3111–3118 (2008).
[Crossref]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Byon, J. W.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Camposeo, A.

Cartwright, A. N.

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Chhajed, S.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Chiappelli, M. C.

M. C. Chiappelli and R. C. Hayward, “Photonic multilayer sensors from photo-crosslinkable polymer films,” Adv. Mater. 24(45), 6100–6104 (2012).
[Crossref] [PubMed]

Choi, S. Y.

S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
[Crossref] [PubMed]

Chopra, N.

S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
[Crossref] [PubMed]

Cingolani, R.

Cohen, R. E.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[Crossref] [PubMed]

Colodrero, S.

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24(9), 4430–4434 (2008).
[Crossref] [PubMed]

Cui, L.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Del Carro, P.

Eder, D.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Elipe, A. R. G.

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

Exner, A. T.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Fan, L. X.

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Fuertes, M. C.

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Gan, Q.

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Garcia, L. G.

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

Goel, P.

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

Gu, H.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Gu, Z.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Gu, Z. Z.

Y. J. Zhao, X. W. Zhao, and Z. Z. Gu, “Photonic crystals in bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Guehl, M.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Guldin, S.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Guo, D. L.

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

Hayward, R. C.

M. C. Chiappelli and R. C. Hayward, “Photonic multilayer sensors from photo-crosslinkable polymer films,” Adv. Mater. 24(45), 6100–6104 (2012).
[Crossref] [PubMed]

Hu, H.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Huang, S. Y.

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

Hwang, S.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Illia, G. J. A. A. S.

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Im, J.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Jang, H. W.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Ji, D.

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Kim, J. K.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[Crossref]

Kolle, M.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Krause, K. M.

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18(20), 3111–3118 (2008).
[Crossref]

Kwon, H.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Lakhtakia, A.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Langford, R.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Lee, D.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[Crossref] [PubMed]

Li, J.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Li, Y.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Liang, S.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Liu, K.

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Lotsch, B. V.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Lozano, G.

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

Lu, T. M.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).

Luca, V.

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Lugli, P.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Mamak, M.

S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
[Crossref] [PubMed]

Marchi, M. C.

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

McGeer, A.

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

Mele, E.

Miguez, H.

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

Míguez, H.

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24(9), 4430–4434 (2008).
[Crossref] [PubMed]

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Moein, T.

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

Ocaña, M.

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24(9), 4430–4434 (2008).
[Crossref] [PubMed]

Oh, S. H.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Ozin, G. A.

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
[Crossref] [PubMed]

Pavlichenko, I.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Persano, L.

Pisignano, D.

Puzzo, D. P.

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Reguera, E.

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Robbie, K.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Rubner, M. F.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[Crossref] [PubMed]

Scarpa, G.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Schubert, E. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[Crossref]

Schubert, M. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[Crossref]

Scotognella, F.

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

Singh, D. P.

D. P. Singh and J. P. Singh, “Delayed freezing of water droplet on silver nanocolumnar thin film,” Appl. Phys. Lett. 102(24), 243112 (2013).
[Crossref]

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

Singh, J. P.

D. P. Singh and J. P. Singh, “Delayed freezing of water droplet on silver nanocolumnar thin film,” Appl. Phys. Lett. 102(24), 243112 (2013).
[Crossref]

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

Stefik, M.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Stein, A.

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Steiner, U.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Troiani, H. E.

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

von Freymann, G.

S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
[Crossref] [PubMed]

Wang, F. H.

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

Wang, G. C.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).

Wang, Z.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Wiesner, U.

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

Willey, B. M.

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[Crossref] [PubMed]

Xi, J. Q.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[Crossref]

Xie, J.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Xie, Z.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Xu, H.

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Yang, B.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Ye, D. X.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).

Yin, Y.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Yoon, S. J.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Zeng, X.

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

Zhang, H.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Zhang, J.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Zhang, L.

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

Zhao, X. W.

Y. J. Zhao, X. W. Zhao, and Z. Z. Gu, “Photonic crystals in bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Zhao, Y. J.

Y. J. Zhao, X. W. Zhao, and Z. Z. Gu, “Photonic crystals in bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

Zhao, Y. P.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).

Zhu, C.

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

Zou, X. W.

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

ACS Appl. Mater. Interfaces (1)

T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” ACS Appl. Mater. Interfaces 6(5), 3081–3087 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (4)

K. M. Krause and M. J. Brett, “Spatially graded nanostructured chiral films as tunable circular polarizers,” Adv. Funct. Mater. 18(20), 3111–3118 (2008).
[Crossref]

C. I. Aguirre, E. Reguera, and A. Stein, “Tunable colors in opals and inverse opal photonic crystals,” Adv. Funct. Mater. 20(16), 2565–2578 (2010).
[Crossref]

Y. J. Zhao, X. W. Zhao, and Z. Z. Gu, “Photonic crystals in bioassays,” Adv. Funct. Mater. 20(18), 2970–2988 (2010).
[Crossref]

M. C. Fuertes, F. J. L. Alcaraz, M. C. Marchi, H. E. Troiani, V. Luca, H. Míguez, and G. J. A. A. S. Illia, “Photonic crystals from ordered mesoporous thin-film functional building blocks,” Adv. Funct. Mater. 17(8), 1247–1254 (2007).
[Crossref]

Adv. Mater. (5)

L. D. Bonifacio, B. V. Lotsch, D. P. Puzzo, F. Scotognella, and G. A. Ozin, “Stacking the nanochemistry deck: structural and compositional diversity in one-dimensional photonic crystals,” Adv. Mater. 21(16), 1641–1646 (2009).
[Crossref]

L. D. Bonifacio, D. P. Puzzo, S. Breslav, B. M. Willey, A. McGeer, and G. A. Ozin, “Towards the photonic nose: a novel platform for molecule and bacteria identification,” Adv. Mater. 22(12), 1351–1354 (2010).
[Crossref] [PubMed]

S. Guldin, M. Kolle, M. Stefik, R. Langford, D. Eder, U. Wiesner, and U. Steiner, “Tunable mesoporous Bragg reflectors based on block-copolymer self-assembly,” Adv. Mater. 23(32), 3664–3668 (2011).
[Crossref] [PubMed]

M. C. Chiappelli and R. C. Hayward, “Photonic multilayer sensors from photo-crosslinkable polymer films,” Adv. Mater. 24(45), 6100–6104 (2012).
[Crossref] [PubMed]

K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-step fabrication of graded rainbow-colored holographic photopolymer reflection gratings,” Adv. Mater. 24(12), 1604–1609 (2012).
[Crossref] [PubMed]

Analyst (Lond.) (1)

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik, J. Im, S. H. Oh, H. W. Jang, S. J. Yoon, and J. K. Kim, “A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose,” Analyst (Lond.) 138(2), 443–450 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

D. P. Singh and J. P. Singh, “Delayed freezing of water droplet on silver nanocolumnar thin film,” Appl. Phys. Lett. 102(24), 243112 (2013).
[Crossref]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high-and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[Crossref]

Chem. Soc. Rev. (1)

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-inspired variable structural color materials,” Chem. Soc. Rev. 41(8), 3297–3317 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

J. Mater. Chem. (2)

Z. Wang, J. Zhang, J. Xie, Z. Wang, Y. Yin, J. Li, Y. Li, S. Liang, L. Zhang, L. Cui, H. Zhang, and B. Yang, “Polymer Bragg stack as color tunable photonic paper,” J. Mater. Chem. 22(16), 7887–7893 (2012).
[Crossref]

L. G. Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. G. Elipe, “TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

J. Phys. Chem. C (2)

D. L. Guo, L. X. Fan, F. H. Wang, S. Y. Huang, and X. W. Zou, “Porous anodic aluminum oxide Bragg stacks as chemical sensors,” J. Phys. Chem. C 112(46), 17952–17956 (2008).
[Crossref]

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-Enhanced Thermally Tunable TiO2/SiO2 Bragg Stacks,” J. Phys. Chem. C 116(1), 298–305 (2012).
[Crossref]

Langmuir (1)

S. Colodrero, M. Ocaña, and H. Míguez, “Nanoparticle-based one-dimensional photonic crystals,” Langmuir 24(9), 4430–4434 (2008).
[Crossref] [PubMed]

Nano Lett. (1)

S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6(11), 2456–2461 (2006).
[Crossref] [PubMed]

Nature (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Opt. Express (1)

Proc. SPIE (1)

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).

Small (1)

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3(8), 1445–1451 (2007).
[Crossref] [PubMed]

Other (1)

I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of shadowed GLAD method. (a) A shadowing block placed near one edge of the substrate casts the shadow by blocking the vapor flux reaching at very high angle (α = 80°). Very small growth is possible in the shadow region. Rotation of substrate keeps the shadowing region change continuously (b) during rotation a uniform flux may also be received by the substrate when block is away from the direction of vapor flux.

Fig. 2
Fig. 2

(a) Variation in thickness of multilayered film with distance from the shadowing block. (b) SEM images of film captured at selected distances [(i) 1 mm, (ii) 5 mm, (iii) 11 mm, (iv) 13 mm, (v) 17 mm, and (vi) 21 mm] from the shadowing block edge. The layers of TiO2 and SiO2 can be identified as bright and dark stripes, respectively.

Fig. 3
Fig. 3

(a) Bright-field STEM image of a part of TiO2 and SiO2 multilayered film and the corresponding EDS elemental mapping images for (b) Si K map, (c) Ti K map and (d) an overlay of the Si and Ti maps. The scale bar in (a) applies to all images.

Fig. 4
Fig. 4

(a) The reflection image of the graded thickness Bragg stack under white light illumination. The dashed line on left indicated the position of shadowing block. A scale bar at the bottom is given to indicate the size of Brag stack and position of different colors from the block edge. (b) Transmittance spectra measured at different distances from the block edge.

Fig. 5
Fig. 5

Measured and calculated values of transmittance minimum wavelength at different positions along the graded rainbow-colored Bragg stack.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m λ Bragg =2( n L h L + n H h H )

Metrics