Abstract

A highly-dispersive mirror with the unprecedented group delay dispersion of −10000 fs2 in the wavelength range of 1025−1035 nm is reported. Reproducible production of a coating with such a high dispersion was possible due to the recently developed robust synthesis technique. Successful employment of the new highly-dispersive mirror in an oscillator is demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-dispersive mirrors for femtosecond lasers

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski
Opt. Express 16(14) 10220-10233 (2008)

High-dispersive mirrors for high power applications

V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz
Opt. Express 20(4) 4503-4508 (2012)

Dispersion management in femtosecond laser oscillators with highly dispersive mirrors

Péter Dombi, Péter Rácz, Miklós Lenner, Volodymyr Pervak, and Ferenc Krausz
Opt. Express 17(22) 20598-20604 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [Crossref] [PubMed]
  2. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [Crossref] [PubMed]
  3. P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
    [Crossref] [PubMed]
  4. V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
    [PubMed]
  5. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35(13), 2302–2304 (2010).
    [Crossref] [PubMed]
  6. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [Crossref] [PubMed]
  7. J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Opt. Lett. 39(22), 6442–6445 (2014).
    [Crossref] [PubMed]
  8. V. Pervak, V. Fedorov, Y. A. Pervak, and M. Trubetskov, “Empirical study of the group delay dispersion achievable with multilayer mirrors,” Opt. Express 21(15), 18311–18316 (2013).
    [Crossref] [PubMed]
  9. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
  10. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
    [Crossref] [PubMed]
  11. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  12. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [Crossref] [PubMed]
  13. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
    [Crossref] [PubMed]
  14. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
    [Crossref] [PubMed]
  15. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 13(7), 574–576 (1988).
    [Crossref] [PubMed]
  16. W. H. Knox, “Dispersion measurements for femtosecond-pulse generation and applications,” Appl. Phys. B 58(3), 225–235 (1994).
    [Crossref]
  17. A. Gosteva, M. Haiml, R. Paschotta, and U. Keller, “Noise-related resolution limit of dispersion measurements with white-light interferometers,” J. Opt. Soc. Am. B 22(9), 1868–1874 (2005).
    [Crossref]
  18. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [Crossref] [PubMed]
  19. J. C. Diels and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic Press, 2006), Chap. 9.

2014 (1)

2013 (1)

2012 (3)

2011 (1)

2010 (1)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

1996 (1)

1994 (2)

1988 (1)

Amotchkina, T. V.

Angelov, I. B.

Apolonski, A.

Apolonskiy, A.

Baer, C. R. E.

Bauer, D.

Brons, J.

DeBell, G. W.

Dekorsy, T.

Dombi, P.

Ehlers, H.

Fedorov, V.

Fedulova, E.

Ferencz, K.

Golling, M.

Gosteva, A.

Gross, T.

Grupe, D.

Haiml, M.

Heckl, O. H.

Hirlimann, C. A.

Huber, G.

Kalashnikov, V.

Keller, U.

Killi, A.

Knox, W. H.

Kränkel, C.

Krausz, F.

Lappschies, M.

Lenner, M.

Li, K. D.

Naumov, S.

Paschotta, R.

Pearson, N. M.

Pervak, V.

Pervak, Y. A.

Petermann, K.

Peters, R.

Pronin, O.

Rácz, P.

Razskazovskaya, O.

Ristau, D.

Saraceno, C. J.

Spielmann, C.

Südmeyer, T.

Sugita, A.

Sutter, D.

Sutter, D. H.

Szipöcs, R.

Teisset, C.

Tikhonravov, A. V.

Trubetskov, M.

Trubetskov, M. K.

Zawischa, I.

Appl. Opt. (5)

Appl. Phys. B (1)

W. H. Knox, “Dispersion measurements for femtosecond-pulse generation and applications,” Appl. Phys. B 58(3), 225–235 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (4)

Other (2)

J. C. Diels and W. Rudolph, Ultrafast Laser Pulse Phenomena (Academic Press, 2006), Chap. 9.

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Physical thicknesses of the individual layers of the HDM. Red bars represent the low refractive index material SiO2. Blue bars represent the high index material Ta2O5. The layers are displayed starting from a substrate. The bottom layer #1 is closest to the substrate, the top layer #50 is closest to the incident medium (air).

Fig. 2
Fig. 2

Comparison of the designed and measured data for the new HDM: The designed GDD for 3° angle of incidence (blue curve), error bars ± 0.5 nm (green curves); the measurement performed with a WLI at 3° angle of incidence (black triangles). The designed reflectance for 7.5° angle of incidence (magenta curve), the square at 1030 nm represents the measurement performed with a lossmeter at 7.5° angle of incidence.

Fig. 3
Fig. 3

Schematic of the oscillator built for testing the intra cavity behavior of the new HDM. The oscillator is a basic diode-pumped KLM Yb:YAG TD laser. OC, output coupler. R300, HR mirrors with radius of curvature 300 mm. Mode-locking was achieved by hard aperture KLM with the sapphire crystal and a pinhole. Mirrors 1 to 4 were either a set of 4 known DMs with a total roundtrip GDD of −20000 fs2 or 3 HR mirrors and the new HDM with the same amount of GDD. During the measurements the oscillator ran at 33.7 MHz repetition rate with an output power of ~4 W.

Fig. 4
Fig. 4

Comparison of spectra (top) and autocorrelations (bottom) of a basic KLM Yb:YAG oscillator working with the known mirror set and with the new HDM. In both graphs the color coding as follows: measured data with reference setup (black line), measured data with test setup (green line), fitted sech2-function to reference data (red dots), fitted sech2-function to test data (magenta dots).

Tables (1)

Tables Icon

Table 1 Cauchy formula coefficients for the substrate and layer materials.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n(λ)= n +A/ λ 2 +B/ λ 4

Metrics