Abstract

We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 94(6), 1118–1124 (2010).
    [CrossRef]
  2. N. Yeh and P. Yeh, “Organic solar cells: Their developments and potentials,” Renew. Sustain. Energy Rev. 21, 421–431 (2013).
    [CrossRef]
  3. D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [CrossRef] [PubMed]
  4. C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
    [CrossRef]
  5. J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
    [CrossRef] [PubMed]
  6. B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
    [CrossRef]
  7. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [CrossRef] [PubMed]
  8. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
    [CrossRef]
  9. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1Suppl 1), A60–A76 (2013).
    [CrossRef] [PubMed]
  10. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
    [CrossRef] [PubMed]
  11. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4Suppl 4), A669–A676 (2013).
    [CrossRef] [PubMed]
  12. W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
    [CrossRef]
  13. E. Lee and C. Kim, “Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode,” Opt. Express 20(S5Suppl 5), A740–A753 (2012).
    [CrossRef] [PubMed]
  14. J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
    [CrossRef]
  15. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
    [CrossRef]
  16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]
  17. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  18. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
    [CrossRef]
  19. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
    [CrossRef] [PubMed]
  20. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  21. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010).
    [CrossRef] [PubMed]
  22. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [CrossRef]
  23. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
    [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  25. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
    [CrossRef]
  26. S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express 21(4), 4055–4060 (2013).
    [CrossRef] [PubMed]
  27. Comsol Multiphysics, http://www.comsol.com .
  28. P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [CrossRef] [PubMed]

2013 (7)

N. Yeh and P. Yeh, “Organic solar cells: Their developments and potentials,” Renew. Sustain. Energy Rev. 21, 421–431 (2013).
[CrossRef]

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[CrossRef]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1Suppl 1), A60–A76 (2013).
[CrossRef] [PubMed]

S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express 21(4), 4055–4060 (2013).
[CrossRef] [PubMed]

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4Suppl 4), A669–A676 (2013).
[CrossRef] [PubMed]

2012 (4)

E. Lee and C. Kim, “Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode,” Opt. Express 20(S5Suppl 5), A740–A753 (2012).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[CrossRef]

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

2011 (2)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

2010 (8)

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010).
[CrossRef] [PubMed]

Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 94(6), 1118–1124 (2010).
[CrossRef]

2009 (1)

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

2008 (3)

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

2002 (1)

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

An, K.-H.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Bai, W.

Barnes, T. M.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Bartoli, F.

Bartoli, F. J.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Bergeson, J. D.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Blackburn, J. L.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[CrossRef]

Buriak, J. M.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

Chen, G.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[CrossRef]

Chen, L.

Chou, S. Y.

Choy, W. C. H.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Chueh, C.-C.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Connor, S. T.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Cui, Y.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Ding, B.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Ding, W.

Elias, A. L.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Emmott, C. J. M.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[CrossRef]

Fan, S.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

Ferguson, A. J.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Gan, Q.

Gedvilas, L. M.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Ghasemi, H.

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[CrossRef]

Guo, L. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Guo, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Harris, K. D.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Hauger, T. C.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Haughn, C.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Heben, M. J.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Holmes, R. J.

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

Hoppe, H.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Hou, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Huh, J.

Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 94(6), 1118–1124 (2010).
[CrossRef]

Huo, L.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

In, S.

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Jen, A. K.-Y.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Jeong, D. S.

Jo, W. H.

Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 94(6), 1118–1124 (2010).
[CrossRef]

Johnson, T. W.

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

Kafafi, Z.

Kafafi, Z. H.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

Kang, M.-G.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Kim, C.

Kim, I.

Kim, W. M.

Lee, E.

Lee, J.-Y.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Lee, K.-S.

Lee, S.

Lee, S. H.

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

Lee, T. S.

Lee, W. S.

Li, C.-Z.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Li, J.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Li, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Li, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Luhman, W. A.

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

Luo, X.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Maldonado, J.-L.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Maloney, S. A.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Mason, D. R.

Meissner, D.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Min, C.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Morfa, A. J.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Nam, Y. M.

Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 94(6), 1118–1124 (2010).
[CrossRef]

Nelson, J.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[CrossRef]

O’Connor, B.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Oh, S.-H.

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

Park, H. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Park, N.

Peumans, P.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Pipe, K. P.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Reilly, T. H.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Rowlen, K. L.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Salinas, J.-F.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

Sariciftci, N. S.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Sha, W. E. I.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Shtein, M.

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

Song, G.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Tait, J. G.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Tenent, R. C.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

To, B.

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Urbina, A.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[CrossRef]

van de Lagemaat, J.

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Veronis, G.

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Worfolk, B. J.

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Xie, F.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Xu, T.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Yang, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Yeh, N.

N. Yeh and P. Yeh, “Organic solar cells: Their developments and potentials,” Renew. Sustain. Energy Rev. 21, 421–431 (2013).
[CrossRef]

Yeh, P.

N. Yeh and P. Yeh, “Organic solar cells: Their developments and potentials,” Renew. Sustain. Energy Rev. 21, 421–431 (2013).
[CrossRef]

Yip, H.-L.

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

You, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Adv. Mater. (7)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater. 24(47), 6362–6367 (2012).
[CrossRef] [PubMed]

R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater. 21(31), 3210–3216 (2009).
[CrossRef]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett. 99(10), 103306 (2011).
[CrossRef]

C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett. 93(22), 223304 (2008).
[CrossRef]

T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92(24), 243304 (2008).
[CrossRef]

Mater. Today (1)

S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today 16(10), 375–386 (2013).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Nano Lett. (2)

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10(8), 2944–2949 (2010).
[CrossRef] [PubMed]

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 8(2), 689–692 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Opt. Express (5)

Renew. Sustain. Energy Rev. (1)

N. Yeh and P. Yeh, “Organic solar cells: Their developments and potentials,” Renew. Sustain. Energy Rev. 21, 421–431 (2013).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 94(6), 1118–1124 (2010).
[CrossRef]

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells 97, 14–21 (2012).
[CrossRef]

J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells 110, 98–106 (2013).
[CrossRef]

Other (2)

Comsol Multiphysics, http://www.comsol.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagrams of solar cells with (a) conventional metal electrodes (CME), (b) our proposed embedded metal electrode scheme (EME), and (c) 100nm thick ITO-based reference. Note that dashed arrows in the active region show examples of transport pathways of holes ( + ) and electrons (-).

Fig. 2
Fig. 2

(a) Sheet resistance (Rs) as a function of wAg for silver nanowire electrodes with different thickness (dAg). (b) FOM as a function of dAct and dCav for EME with dAg = 20nm, wAg = 120nm. (c) FOM as a function of dAct for solar cells with indicated parameters. The black dashed lines in (a) and (c) correspond to the ITO reference structure. (d) FOM with varying index of the dielectric element for optimized EME (dAct = 200nm, dCav = 80nm for dAg = 20nm, wAg = 120nm). Absorption spectra for (e) TM and (f) TE polarizations in CMEs with dAct = 100nm (optimal) and 200nm, and optimized EME. The black dashed line corresponds to ITO structure with dAct = 100nm.

Fig. 3
Fig. 3

Normalized electric field amplitudes: Upper, middle, and bottom rows are for optimized CME with dAct = 100nm, CME with dAct = 200nm, and optimized EME with dAct = 200nm respectively. First, second, and third columns are for TM polarization at λ = 400nm, 500nm, and 600nm, and fourth column is for TE polarization at λ = 600nm respectively.

Fig. 4
Fig. 4

Color maps of FOMs for different Period, as a function of dAct and wAg/Period when dAg = 20nm; (a) Period = 200nm, (b) Period = 300nm, (c) Period = 400nm, (d) Period = 500nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FOM=( λ min λ max λ hc I(λ)A( λ)dλ )× ( λ min λ max λ hc I(λ) dλ ) 1
A(λ)= P in 1 Q av dV = P in 1 1 2 ( 2πc λ ) ε 2 (λ) | E(x,y,λ) | 2 dV
R s =( ρ FS + ρ MS ρ Bulk dAg )×( Period wAg )

Metrics