Abstract

The scattering cross-section of a plasmonic nanoparticle is proportional to the intensity of the electric field that drives the plasmon resonance. In this work we determine the driving field pattern throughout a complete thin-film silicon solar cell. Our simulations reveal that by tuning of the thicknesses of silicon and transparent conductive oxide layers the driving field intensity experienced by an embedded plasmonic nanoparticle can be enhanced up to a factor of 14. This new insight opens the route towards more efficient plasmonic light trapping in thin-film solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
    [CrossRef]
  2. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
    [CrossRef]
  3. F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994).
    [CrossRef]
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [CrossRef]
  5. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  7. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  8. R. Santbergen, R. Liang, and M. Zeman, “A-Si:H solar cells with embedded silver nanoparticles,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 748–753.
    [CrossRef]
  9. E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
    [CrossRef]
  10. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  11. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [CrossRef] [PubMed]
  12. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
    [CrossRef]
  13. H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
    [CrossRef]
  14. P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
    [CrossRef]
  15. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
    [CrossRef]
  16. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Diffuse reflectance and absorption characterization of a plasmonic back reflector for application in thin film Si solar cells,” in Proceedings of the MRS Fall Meeting 1391 (2011), pp. 33–38.
  17. R. Santbergen, H. Tan, A. H. M. Smets, and M. Zeman, “Driving field optimization of plasmonic back reflector for thin-film silicon solar cells,” in Renewable Energy and the Environment Optics and Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper JM4B.3.
    [CrossRef]
  18. E. Wang, T. P. White, and K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012).
    [CrossRef] [PubMed]
  19. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012).
    [CrossRef]
  20. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
    [CrossRef]
  21. R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013).
    [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  23. R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
    [CrossRef]
  24. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906–1913 (2000).
    [CrossRef]
  25. H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
    [CrossRef]

2013 (4)

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[CrossRef]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013).
[CrossRef] [PubMed]

2012 (4)

E. Wang, T. P. White, and K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012).
[CrossRef] [PubMed]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012).
[CrossRef]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

2010 (1)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

2009 (1)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

2008 (2)

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

2001 (1)

P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
[CrossRef]

2000 (2)

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17(11), 1906–1913 (2000).
[CrossRef]

1998 (2)

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

1996 (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

1994 (1)

F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994).
[CrossRef]

1983 (1)

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Bagnall, D. M.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Diffuse reflectance and absorption characterization of a plasmonic back reflector for application in thin film Si solar cells,” in Proceedings of the MRS Fall Meeting 1391 (2011), pp. 33–38.

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Catchpole, K. R.

E. Wang, T. P. White, and K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20(12), 13226–13237 (2012).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Gordijn, A.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Johansson, P.

P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Leblanc, F.

F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994).
[CrossRef]

Liang, R.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

R. Santbergen, R. Liang, and M. Zeman, “A-Si:H solar cells with embedded silver nanoparticles,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 748–753.
[CrossRef]

Mertz, J.

Metselaar, J. W.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

Moulin, E.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Perrin, J.

F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Royer, F. X.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Santbergen, R.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013).
[CrossRef] [PubMed]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

R. Santbergen, R. Liang, and M. Zeman, “A-Si:H solar cells with embedded silver nanoparticles,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 748–753.
[CrossRef]

Schmitt, J.

F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994).
[CrossRef]

Schropp, R. E. I.

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Schulte, M.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Sesuraj, R. S. A.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Diffuse reflectance and absorption characterization of a plasmonic back reflector for application in thin film Si solar cells,” in Proceedings of the MRS Fall Meeting 1391 (2011), pp. 33–38.

Sivec, L.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

Smets, A. H. M.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013).
[CrossRef] [PubMed]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Stiebig, H.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Sukmanowski, J.

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Tan, H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Temple, T. L.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[CrossRef]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012).
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Diffuse reflectance and absorption characterization of a plasmonic back reflector for application in thin film Si solar cells,” in Proceedings of the MRS Fall Meeting 1391 (2011), pp. 33–38.

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

van Swaaij, R. A. C. M. M.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

Wang, E.

White, T. P.

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

Yan, B.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

Yang, G.

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

Zeman, M.

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013).
[CrossRef] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

R. Santbergen, R. Liang, and M. Zeman, “A-Si:H solar cells with embedded silver nanoparticles,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 748–753.
[CrossRef]

Appl. Phys. Express (1)

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Tunable low-loss plasmonic mirror for diffuse optical scattering,” Appl. Phys. Express 5(12), 125205 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[CrossRef]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102(15), 153902 (2013).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96(3), 033113 (2010).
[CrossRef]

IEEE J. Photovolt. (1)

H. Tan, R. Santbergen, G. Yang, A. H. M. Smets, and M. Zeman, “Combined optical and electrical design of plasmonic back reflector for high-efficiency thin-film silicon solar cells,” IEEE J. Photovolt. 3(1), 53–58 (2013).
[CrossRef]

J. Appl. Phys. (4)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

F. Leblanc, J. Perrin, and J. Schmitt, “Numerical modeling of the optical properties of hydrogenated amorphous-silicon-based p-i-n solar cells deposited on rough transparent conducting oxide substrates,” J. Appl. Phys. 75(2), 1074–1087 (1994).
[CrossRef]

M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modelling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys. 88(11), 6436–6443 (2000).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Opt. (1)

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14(2), 024010 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

P. Johansson, “Light scattering from disordered overlayers of metallic nanoparticles,” Phys. Rev. B 64(16), 165405 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

H. R. Stuart and D. G. Hall, “Enhanced dipole-dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[CrossRef]

Thin Solid Films (1)

E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516(20), 6813–6817 (2008).
[CrossRef]

Other (3)

R. Santbergen, R. Liang, and M. Zeman, “A-Si:H solar cells with embedded silver nanoparticles,” in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), pp. 748–753.
[CrossRef]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Diffuse reflectance and absorption characterization of a plasmonic back reflector for application in thin film Si solar cells,” in Proceedings of the MRS Fall Meeting 1391 (2011), pp. 33–38.

R. Santbergen, H. Tan, A. H. M. Smets, and M. Zeman, “Driving field optimization of plasmonic back reflector for thin-film silicon solar cells,” in Renewable Energy and the Environment Optics and Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper JM4B.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic cross-section of a-Si:H solar cell with plasmonic back reflector. The inset shows a silver nanoparticle at an anti-node at distance d from the mirror.

Fig. 2
Fig. 2

Simulated intensity of the driving field in and above an Ag/ZnO:Al back reflector with ZnO:Al thickness of a) 60 nm, b) 120 nm, c) 180 nm and d) 240 nm.

Fig. 3
Fig. 3

Simulated driving field intensity at the location of the silver nanoparticle for distances to the mirror of 60, 120, 180 and 240 nm [17].

Fig. 4
Fig. 4

Measured absorbance (solid line) and diffuse reflectance (dashed line) for plasmonic back reflectors with nanoparticle-mirror distance of 60, 120, 180 and 240 nm [17].

Fig. 5
Fig. 5

Simulated amplitude of the driving field in and above an amorphous silicon solar cell with a nanoparticle-mirror distance of a) 60 nm, b) 120 nm, c) 180 nm and d) 240 nm.

Fig. 6
Fig. 6

Simulated driving field intensity at the location of the silver nanoparticles inside the a-Si:H solar cells with a nanoparticle-mirror distance of 60, 120, 180 and 240 nm. The lines in a lighter shade are taken from Fig. 3 and correspond to the case of the back reflector without solar cell.

Fig. 7
Fig. 7

Simulated intensity of the driving field in ZnO:Al at a distance d from the mirror for an a-Si:H solar cell with layer thicknesses of ITO, a-Si:H and ZnO:Al given in the figure. a) highest peak driving field intensity. b) highest average driving field intensity.

Metrics