Abstract

We present an investigation on utilizing plasmonic aluminium (Al) nanoparticles (NPs) to enhance the optical absorption of dye-sensitized solar cells (DSCs). The Al NPs exhibit not only the light absorption enhancement in solar cells with localized surface plasmon (LSP) effect but also the chemical stability to iodide/triiodide electrolyte. Besides, the lower work function (~4.06 eV), compared with that of TiO2 (~4.6 eV), may suppress the quenching processes, such as charge transfer to metal NPs, to reduce the loss. Thus, high concentration of Al NPs could be incorporated into the TiO2 anodes, and the power conversion efficiency (PCE) of DSCs is improved by nearly 13%. Moreover, electrochemical impedance spectroscopy (EIS) characterization also indicates that the plasmonic DSCs with Al NPs present better electrochemical performance than regular ones, which contributes to the improvement of PCE of the device.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353, 24 (1991).
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
    [CrossRef]
  3. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [CrossRef] [PubMed]
  4. M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
    [CrossRef]
  5. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
    [CrossRef] [PubMed]
  6. M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
    [CrossRef]
  7. K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
    [CrossRef]
  8. C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
  9. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
    [CrossRef] [PubMed]
  10. C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
    [CrossRef]
  11. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
    [CrossRef] [PubMed]
  12. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
    [CrossRef] [PubMed]
  13. Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
    [CrossRef]
  14. X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
    [CrossRef] [PubMed]
  15. Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
    [CrossRef] [PubMed]
  16. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
    [CrossRef] [PubMed]
  17. G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46(3), 219–231 (1997).
    [CrossRef]
  18. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013, CRC press (2012).
  19. V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
    [CrossRef]
  20. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses,” Opt. Express 17(15), 12650–12659 (2009).
    [CrossRef] [PubMed]
  21. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
    [CrossRef] [PubMed]
  22. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
    [CrossRef]
  23. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  24. C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
    [CrossRef]
  25. Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B 109(31), 14945–14953 (2005).
    [CrossRef] [PubMed]
  26. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
    [CrossRef]
  27. S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
    [CrossRef]
  28. H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano 6(5), 4418–4427 (2012).
    [CrossRef] [PubMed]

2013 (2)

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

2012 (4)

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[CrossRef]

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano 6(5), 4418–4427 (2012).
[CrossRef] [PubMed]

2011 (4)

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
[CrossRef]

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

2009 (4)

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, “Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses,” Opt. Express 17(15), 12650–12659 (2009).
[CrossRef] [PubMed]

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

2008 (1)

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).

2007 (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[CrossRef]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B 109(31), 14945–14953 (2005).
[CrossRef] [PubMed]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
[CrossRef]

2003 (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
[CrossRef]

2001 (1)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[CrossRef] [PubMed]

2000 (1)

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
[CrossRef]

1997 (2)

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46(3), 219–231 (1997).
[CrossRef]

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

1993 (1)

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

1991 (1)

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353, 24 (1991).

Barberoglou, M.

Belcher, A. M.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Bisquert, J.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

Brown, M. D.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Cai, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Chang, S.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

Chen, P.-Y.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

Chen, T.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

Chen, W. T.

H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano 6(5), 4418–4427 (2012).
[CrossRef] [PubMed]

Chen, X.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Choi, H.

H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano 6(5), 4418–4427 (2012).
[CrossRef] [PubMed]

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Cui, K.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

D’Innocenzo, V.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Dang, X.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[CrossRef]

Fabregat-Santiago, F.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

Fang, N. X.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Feng, X.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Fotakis, C.

Garcia, C.

Garcia-Belmonte, G.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

Giménez, S.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

Grätzel, M.

Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B 109(31), 14945–14953 (2005).
[CrossRef] [PubMed]

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
[CrossRef]

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[CrossRef] [PubMed]

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353, 24 (1991).

Gu, M.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Hagglund, C.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).

Hammond, P. T.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Honma, I.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[CrossRef]

Huang, Y.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[CrossRef]

Humphry-Baker, R.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Hupp, J. T.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Ihara, M.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

Ishikawa, K.

K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
[CrossRef]

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
[CrossRef]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[CrossRef]

Jao, C.-Y.

V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
[CrossRef]

Jia, B.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Jung, D.-R.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Kamat, P. V.

H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano 6(5), 4418–4427 (2012).
[CrossRef] [PubMed]

Kasemo, B.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).

Kay, A.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Kim, C.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Kim, J.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Kishima, M.

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
[CrossRef]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Klug, M. T.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

Kochergin, V.

V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
[CrossRef]

Kozuka, H.

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46(3), 219–231 (1997).
[CrossRef]

Kumar, R. S. S.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Lee, B.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Lee, M. M.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Li, Q.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

Liska, P.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Liu, F.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[CrossRef]

Liu, Y.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Meng, W.

Moon, J.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Mora-Seró, I.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

Moser, J.-E.

Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B 109(31), 14945–14953 (2005).
[CrossRef] [PubMed]

Müller, E.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Muñoz Javier, A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Nahm, C.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Nazeeruddin, M. K.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Neely, L.

V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
[CrossRef]

O’regan, B.

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353, 24 (1991).

Okubo, T.

K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
[CrossRef]

Parak, W. J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Park, B.

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

Petrozza, A.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Qi, J.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

Qiao, Q.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Robinson, H. D.

V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
[CrossRef]

Rodicio, I.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Saha, J. K.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Sakaki, K.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

Schatz, G. C.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Shafeev, G. A.

Shi, Z.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Snaith, H. J.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Standridge, S. D.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

Stokes, N.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Stratakis, E.

Suteewong, T.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Tanaka, K.

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

Viau, G.

Vlachopoulos, N.

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

Wang, Q.

Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B 109(31), 14945–14953 (2005).
[CrossRef] [PubMed]

Wang, Y.

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Wen, C.

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
[CrossRef]

Wen, C.-J.

K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
[CrossRef]

Wiesner, U.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Wong, K. Y.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

Xiao, X.

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

Xu, Q.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Q. Xu, F. Liu, W. Meng, and Y. Huang, “Plasmonic core-shell metal-organic nanoparticles enhanced dye-sensitized solar cells,” Opt. Express 20(S6), A898–A907 (2012).
[CrossRef]

Yamada, K.

K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
[CrossRef]

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
[CrossRef]

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

Yoko, T.

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46(3), 219–231 (1997).
[CrossRef]

Yun, D. S.

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

Zach, M.

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhang, W.

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Zhao, G.

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46(3), 219–231 (1997).
[CrossRef]

ACS Nano (2)

J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, “Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure,” ACS Nano 5(9), 7108–7116 (2011).
[CrossRef] [PubMed]

H. Choi, W. T. Chen, and P. V. Kamat, “Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells,” ACS Nano 6(5), 4418–4427 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

V. Kochergin, L. Neely, C.-Y. Jao, and H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98(13), 133305 (2011).
[CrossRef]

C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee, and B. Park, “The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,” Appl. Phys. Lett. 99(25), 253107 (2011).
[CrossRef]

C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).

Energy Environ. Sci. (1)

S. Chang, Q. Li, X. Xiao, K. Y. Wong, and T. Chen, “Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods,” Energy Environ. Sci. 5(11), 9444–9448 (2012).
[CrossRef]

J. Am. Chem. Soc. (2)

M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J. Am. Chem. Soc. 115(14), 6382–6390 (1993).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

J. Chem. Eng. of Jpn (1)

K. Ishikawa, C.-J. Wen, K. Yamada, and T. Okubo, “The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance,” J. Chem. Eng. of Jpn 37(5), 645–649 (2004).
[CrossRef]

J. Photochem. Photobiol. Photochem. Rev. (1)

M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. Photochem. Rev. 4(2), 145–153 (2003).
[CrossRef]

J. Phys. Chem. B (2)

M. Ihara, K. Tanaka, K. Sakaki, I. Honma, and K. Yamada, “Enhancement of the Absorption Coefficient of cis-(NCS) 2 Bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) Dye in Dye-Sensitized Solar Cells by a Silver Island Film,” J. Phys. Chem. B 101(26), 5153–5157 (1997).
[CrossRef]

Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” J. Phys. Chem. B 109(31), 14945–14953 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, and S. Giménez, “Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,” J. Phys. Chem. C 113(40), 17278–17290 (2009).
[CrossRef]

Langmuir (1)

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[CrossRef] [PubMed]

Nano Lett. (4)

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

X. Dang, J. Qi, M. T. Klug, P.-Y. Chen, D. S. Yun, N. X. Fang, P. T. Hammond, and A. M. Belcher, “Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells,” Nano Lett. 13(2), 637–642 (2013).
[CrossRef] [PubMed]

X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12(5), 2187–2192 (2012).
[CrossRef] [PubMed]

Nature (2)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[CrossRef] [PubMed]

B. O’regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature 353, 24 (1991).

Opt. Express (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Plasmonics (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[CrossRef]

Sci. Rep. (1)

Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles,” Sci. Rep. 3, 2112 (2013).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

G. Zhao, H. Kozuka, and T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46(3), 219–231 (1997).
[CrossRef]

C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61(4), 339–351 (2000).
[CrossRef]

Other (1)

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013, CRC press (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic structure of plasmonic Aluminum (Al) nanoparticles (NPs) enhanced dye-sensitized solar cells (DSCs). (b) Scanning electron microscopy (SEM) image of Al NPs. (c) Energy dispersive spectroscopy (EDS) measurement result of Al NPs. (d) Calculated optical absorption of Al NPs (black curve) and measured optical absorption of Al NPs (red curve) and Al2O3 NPs (blue curve) in ethanol solutions. The concentrations of Al NPs and Al2O3 NPs are the same. Inset: The calculated LSP field distribution of the 50nm Al NP illuminated by incident light at wavelengths of 380 nm.

Fig. 2
Fig. 2

(a) Optical Absorption of dye-sensitized TiO2 anodes incorporated with/without Al NPs. (b) The photocurrent density-voltage characteristics (J-V curves) of DSCs incorporated with Al or Al2O3 NPs and TiO2-only DSCs. The TiO2 anodes are composed of 3μm active layers (25nm TiO2 NPs).

Fig. 3
Fig. 3

(a) The J-V curves of DSCs incorporated with Al NPs at optimised concentration of 0.75 wt% and TiO2-only DSCs, the TiO2 anodes are composed of 8μm active layers (25nm TiO2 NPs) and 2μm scattering layers (200 nm TiO2 NPs). (b) Incident photon-to-electron conversion efficiency (IPCE) of Al NPs enhanced DSCs and TiO2-only DSCs.

Fig. 4
Fig. 4

Electrochemical impedance spectra (EIS) of DSCs incorporated with/without Al NPs. Inset is the equivalent circuit.

Fig. 5
Fig. 5

Optical absorption of Al NPs in ethanol solution before/after being mixed with electrolyte.

Fig. 6
Fig. 6

The calculated LSP field distribution of the Al NP with the diameter D of 20nm (left) and 50nm (right) which is illuminated by incident light at wavelengths of 360 nm (left) and 350nm (right).

Tables (2)

Tables Icon

Table 1 Performance of DSCs composed of 8μm active layers and 2μm scattering layers.

Tables Icon

Table 2 Electrochemical impedance spectra (EIS) properties of DSCs incorporated with/without Al NPs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D NPs = N NPs V Ti O 2 = m NPs m NP × V Ti O 2 = m NPs × ρ Ti O 2 V NP × ρ metal × V Ti O 2 × ρ Ti O 2 = ρ Ti O 2 V NP × ρ metal × m NPs m Ti O 2

Metrics