Abstract

The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (Tave) into the CuIn1−xGaxSe2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (Rave) from the cell surface or maximum Tave into the CIGS absorber. In the presence of one MgF2 coating, difference in Rave associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding Tave values could be up to 14.34% apart. Significant Tave improvements associated with the maximum-Tave-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-Tave-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-Rave-based counterparts, to be highly robust to omnidirectional incidence.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
    [CrossRef]
  2. A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
    [CrossRef]
  3. Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  4. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19(S5), A1155–A1164 (2011).
    [CrossRef] [PubMed]
  5. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [CrossRef] [PubMed]
  6. S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express 21(S1), A157–A166 (2013).
    [CrossRef] [PubMed]
  7. V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
    [CrossRef] [PubMed]
  8. B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
    [CrossRef]
  9. Y.-J. Chang and Y.-T. Chen, “Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum,” Opt. Express 19(24), A875–A887 (2011).
    [CrossRef] [PubMed]
  10. S. Hwang and J.-H. Jang, “3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000864–000867 (2012).
  11. J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
    [CrossRef]
  12. M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
    [CrossRef] [PubMed]
  13. A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
    [CrossRef]
  14. Y.-J. Chang and C.-S. Lai, “Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema,” Opt. Lett. 38(17), 3257–3260 (2013).
    [CrossRef] [PubMed]
  15. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications (Kluwer Academic Publishers, 1987).
  16. Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films 496, 520–525 (2006).
    [CrossRef]
  17. K. Ellmer, A. Klein, and B. Rech, ed., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, 2010).
  18. J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).
  19. P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  21. D. M. Pozar, Microwave Engineering (Addison-Wesley, 1993).
  22. P. Yeh, Optical Waves in Layered Medium (Wiley, 2005).
  23. J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).
  24. N. G. Dhere, “Toward GW/year of CIGS production within the next decade,” Sol. Energy Mater. Sol. Cells 91, 1376–1382 (2007).
    [CrossRef]

2013

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

S. J. Oh, S. Chhajed, D. J. Poxson, J. Cho, E. F. Schubert, S. J. Tark, D. Kim, and J. K. Kim, “Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings,” Opt. Express 21(S1), A157–A166 (2013).
[CrossRef] [PubMed]

Y.-J. Chang and C.-S. Lai, “Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema,” Opt. Lett. 38(17), 3257–3260 (2013).
[CrossRef] [PubMed]

2012

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

2011

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Y.-J. Chang and Y.-T. Chen, “Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum,” Opt. Express 19(24), A875–A887 (2011).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells,” Opt. Express 19(S5), A1155–A1164 (2011).
[CrossRef] [PubMed]

2008

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

2007

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

N. G. Dhere, “Toward GW/year of CIGS production within the next decade,” Sol. Energy Mater. Sol. Cells 91, 1376–1382 (2007).
[CrossRef]

2006

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films 496, 520–525 (2006).
[CrossRef]

2003

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003).
[CrossRef]

Aarts, E. H. L.

P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications (Kluwer Academic Publishers, 1987).

Agashe, C.

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films 496, 520–525 (2006).
[CrossRef]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Bilger, G.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Birkmire, R. W.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003).
[CrossRef]

Bloesch, P.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Buecheler, S.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Campa, A.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Cernivec, G.

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Chang, Y.-J.

Chen, J.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).

Chen, Y.-T.

Chhajed, S.

Chirila, A.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Cho, J.

Cho, J.-H.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Collins, R. W.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

DeHart, C.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Dhere, N. G.

N. G. Dhere, “Toward GW/year of CIGS production within the next decade,” Sol. Energy Mater. Sol. Cells 91, 1376–1382 (2007).
[CrossRef]

Edoff, M.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Fella, C.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Glynn, S.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

Gretener, C.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Han, H.-V.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Hsieh, M. -Y.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hwang, C.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Hwang, S.

S. Hwang and J.-H. Jang, “3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000864–000867 (2012).

Jang, J.-H.

S. Hwang and J.-H. Jang, “3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000864–000867 (2012).

Kim, D.

Kim, J. K.

Kranz, L.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Krc, J.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Kuo, H.-C.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Kuo, S.-Y.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Lai, C.-S.

Lai, F.-I.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Lare, M. C. v.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Lee, T.-I.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Lee, Y.-J.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Leem, J. W.

Li, J.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).

Liao, Y.-K.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Malmström, J.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Mann, J.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

McKenzie, B. B.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Mergel, D.

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films 496, 520–525 (2006).
[CrossRef]

Myoung, J.-M.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Nishiwaki, S.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Noh, G.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Noufi, R.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Oh, S. J.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Paulson, P. D.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003).
[CrossRef]

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Perrenoud, J.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Peters, D. W.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Pianezzi, F.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Poxson, D. J.

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Addison-Wesley, 1993).

Qiao, Z.

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films 496, 520–525 (2006).
[CrossRef]

Ramanathan, K.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

Repins, I.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Romanyuk, Y. E.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Ruby, D. S.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Schubert, E. F.

Sestak, M. N.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).

Seyrling, S.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Shafarmana, W. N.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003).
[CrossRef]

Shin, B.-K.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Smole, F.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Song, Y. M.

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Tark, S. J.

Thornberry, C.

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).

Tiwari, A. N.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Topic, M.

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Uhl, A. R.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

van Laarhoven, P. J. M.

P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications (Kluwer Academic Publishers, 1987).

Verma, R.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Xiong, J.

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Yang, J.-F.

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Medium (Wiley, 2005).

Yu, J. S.

IEEE J. Photovolt.

J. Mann, J. Li, I. Repins, K. Ramanathan, S. Glynn, C. DeHart, and R. Noufi, “Reflection optimization for alternative thin-film photovoltaics,” IEEE J. Photovolt. 3(1), 472–475 (2013).
[CrossRef]

J. Appl. Phys.

P. D. Paulson, R. W. Birkmire, and W. N. Shafarmana, “Optical characterization of CuIn1−x Gax Se2 alloy thin films by spectroscopic ellipsometry,” J. Appl. Phys. 94(2), 879–888 (2003).
[CrossRef]

Nano. Lett.

Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano. Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano. Lett. 11, 4239–4245 (2011).
[CrossRef] [PubMed]

Nanoscale

M. -Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I. Lai, and H.-C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2solar cells with ZnO functional nanotree arrays,” Nanoscale 5, 3841–3846 (2013).
[CrossRef] [PubMed]

Nat. Commun.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[CrossRef] [PubMed]

Nat. Mater.

A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2solar cells grown on flexible polymer films,” Nat. Mater. 10, 857–861 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

J. Krč, G. Cernivec, A. Čampa, J. Malmström, M. Edoff, F. Smole, and M. Topič, “Optical and electrical modeling of Cu(In,Ga)Se2solar cells,” Opt. Quantum Electron. 38(12–14), 1115–1123 (2006).

Prog. Photovolt: Res. Appl.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235–239 (2008).
[CrossRef]

Sol. Energy Mater. Sol. Cells

B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, and J.-M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

N. G. Dhere, “Toward GW/year of CIGS production within the next decade,” Sol. Energy Mater. Sol. Cells 91, 1376–1382 (2007).
[CrossRef]

Thin Solid Films

A. Čampa, J. Krč, J. Malmström, M. Edoff, F. Smole, and M. Topič, “The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells,” Thin Solid Films 515(15), 5968–5972 (2007).
[CrossRef]

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films 496, 520–525 (2006).
[CrossRef]

Other

K. Ellmer, A. Klein, and B. Rech, ed., Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Springer, 2010).

J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: From dielectric functions to solar cell structures,” in 34th IEEE Photovoltaic Specialists Conf. pp. 001982–001987 (2009).

P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications (Kluwer Academic Publishers, 1987).

S. Hwang and J.-H. Jang, “3D simulations for the optimization of antireflection subwavelength structures in CIGS solar cells,” in 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 000864–000867 (2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

D. M. Pozar, Microwave Engineering (Addison-Wesley, 1993).

P. Yeh, Optical Waves in Layered Medium (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The structure considered in this work: (a) a typical CIGS solar cell with a MgF2 AR coating on soda-lime glass and (b) the associated rigorous transmission-line network representation of two adjacent layers within the cell, where κ = α + and Z0 represent the complex propagation constant and the characteristic impedance, respectively.

Fig. 2
Fig. 2

Polarization-averaged reflectance R(λ, θ) obtained based on criteria of minimum average reflectance (a) and maximum average transmittance (b) for a typical CIGS solar cell.

Fig. 3
Fig. 3

Polarization-averaged transmittance T(λ, θ) obtained based on criteria of minimum average reflectance (a) and maximum average transmittance (b) for a typical CIGS solar cell.

Fig. 4
Fig. 4

Comparisons between the angle-averaged reflectance (a) and transmittance (b) associated with SA-optimized MgF2/interlayer thicknesses based on minimum average reflectance CR() and maximum average transmittance CT () criteria.

Fig. 5
Fig. 5

Comparisons in angular mismatch spectra among some CIGS solar cell designs: (a) based on minimum average reflectance, CR(), (b) based on maximum average transmittance, CT (), and (c) by setting the interlayer thicknesses to their respective minima [(t AZO, t ZnO, t CdS) = (150, 40, 40) nm].

Fig. 6
Fig. 6

Robustness studies of the structure to broadband and nearly-omnidirectional incidence when it was optimized at a single incident angle based on cost function CT () or CR(): (a) the average reflectance Rave, and (b) the average transmittance Tave. Quantities Rave and Tave were averaged over the TE/TM, λ = [350, 1200] nm, and θ = [0°, 80°]. The horizontal axis represents the incident angle at which the optimization is conducted.

Tables (3)

Tables Icon

Table 1 Domains of Variables of the Cost Function Ci(), i = {R, T}, Used in Simulated-Annealing Optimizations.

Tables Icon

Table 2 Performance and Layer Thickness (in nm) Comparisons between SA-Optimized Results Based on Minimum Average Reflectance [CR(), Eq. (3)] and Maximum Average Transmittance [CT (), Eq. (4)] Criteria, All without Solar Spectrum Weighting (SSW), for a Typical CIGS Solar Cell.

Tables Icon

Table 3 Performance and Layer Thickness (in nm) Comparisons between SA-Optimized Results Obtained Based on Minimum Average Reflectance [CR(), Eq. (3)] and Maximum Average Transmittance [CT (), Eq. (4)] Criteria, All without Solar Spectrum Weighting (SSW), for a Typical CIGS Solar Cell under Normal Incidence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V 0 , i + 1 + = { 2 ( R 0 , i 2 + X 0 , i 2 ) 1 / 2 P in , i [ R 0 , i ( e + 2 α i t i | Γ i + 1 | 2 e 2 α i t i ) 2 X 0 , i | Γ i + 1 | sin ( ϕ i + 1 2 β i t i ) ] } 1 / 2 ,
P in , i + 1 ( z = 0 ) = 1 2 Re [ | V 0 , i + 1 + | 2 Z 0 , i * ( 1 Γ i + 1 * + Γ i + 1 | Γ i + 1 | 2 ) ]
C R ( X _ ) = Δ θ Δ λ [ | Γ TE ( X _ , λ , θ ) | 2 + | Γ TM ( X _ , λ , θ ) | 2 ] I ( λ ) d λ d θ 2 Δ θ Δ λ I ( λ ) d λ d θ ,
C T ( X _ ) = 1 Δ θ Δ λ [ T TE ( X _ , λ , θ ) + T TM ( X _ , λ , θ ) ] I ( λ ) d λ d θ 2 Δ θ Δ λ I ( λ ) d λ d θ ,

Metrics