Abstract

A solution-grown subwavelength antireflection coating has been investigated for enhancing the photovoltaic efficiency of thin film solar cells. The 100-nm-height ZnO nanorods coating benefited the photocurrent of Cu(In,Ga)Se2 solar cells from 31.7 to 34.5 mA/cm2 via the decrease of surface light reflectance from 14.5% to 7.0%, contributed by the gradual refractive index profile between air and AZO window layer. The further reduction of surface reflectance to 2.3% in the case of 540-nm-height nanorods, yet, lowered the photocurrent to 29.5 mA/cm2, attributed to the decrease in transmittance. The absorption effect of hydrothermal grown ZnO nanorods was explored to optimize the antireflection function in enhancing photovoltaic performances.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Liao, S. Y. Kuo, W. T. Lin, F. I. Lai, D. H. Hsieh, M. A. Tsai, S. C. Chen, D. W. Chiou, J. C. Chang, K. H. Wu, S. J. Cheng, and H.-C. Kuo, “Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells,” Opt. Express 20(S6), A836–A842 (2012).
    [CrossRef]
  2. X. H. Tan, S. L. Ye, and X. Liu, “Increasing surface band gap of Cu(In,Ga)Se2 thin films by post depositing an In-Ga-Se thin layer,” Opt. Express 19(7), 6609–6615 (2011).
    [CrossRef] [PubMed]
  3. Y. C. Wang and H. P. Shieh, “Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process,” Appl. Phys. Lett. 103(15), 153502 (2013).
    [CrossRef]
  4. R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
    [CrossRef]
  5. V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
    [CrossRef]
  6. C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
    [CrossRef]
  7. M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
    [CrossRef] [PubMed]
  8. B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
    [CrossRef]
  9. L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
    [CrossRef]
  10. S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
    [CrossRef]
  11. S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
    [CrossRef] [PubMed]
  12. Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
    [CrossRef] [PubMed]
  13. I. H. Choi, “Raman spectroscopy of CuIn1 − xGaxSe2 for in-situ monitoring of the composition ratio,” Thin Solid Films 519(13), 4390–4393 (2011).
    [CrossRef]
  14. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
    [CrossRef]
  15. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
    [CrossRef]
  16. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [CrossRef] [PubMed]
  17. B. Thornton, “Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am. 65(3), 267–270 (1975).
    [CrossRef]
  18. H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
    [CrossRef]

2013

Y. C. Wang and H. P. Shieh, “Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process,” Appl. Phys. Lett. 103(15), 153502 (2013).
[CrossRef]

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013).
[CrossRef] [PubMed]

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

2012

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
[CrossRef] [PubMed]

Y. K. Liao, S. Y. Kuo, W. T. Lin, F. I. Lai, D. H. Hsieh, M. A. Tsai, S. C. Chen, D. W. Chiou, J. C. Chang, K. H. Wu, S. J. Cheng, and H.-C. Kuo, “Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells,” Opt. Express 20(S6), A836–A842 (2012).
[CrossRef]

2011

X. H. Tan, S. L. Ye, and X. Liu, “Increasing surface band gap of Cu(In,Ga)Se2 thin films by post depositing an In-Ga-Se thin layer,” Opt. Express 19(7), 6609–6615 (2011).
[CrossRef] [PubMed]

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
[CrossRef]

I. H. Choi, “Raman spectroscopy of CuIn1 − xGaxSe2 for in-situ monitoring of the composition ratio,” Thin Solid Films 519(13), 4390–4393 (2011).
[CrossRef]

2010

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

2007

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

2006

R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
[CrossRef]

2005

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

1993

1975

Aé, L.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Baek, S. H.

S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
[CrossRef] [PubMed]

Battisha, I.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Bente, K.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Caballero, R.

R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
[CrossRef]

Chang, J. C.

Chang, W. E.

C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
[CrossRef]

Chao, Y. C.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Chen, C. K.

Chen, C. Y.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Chen, H.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Chen, H. M.

Chen, J.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Chen, S. C.

Chen, Y. L.

Cheng, H. L.

C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
[CrossRef]

Cheng, S. J.

Chiou, D. W.

Cho, J. H.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Choi, C. K.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Choi, I. H.

I. H. Choi, “Raman spectroscopy of CuIn1 − xGaxSe2 for in-situ monitoring of the composition ratio,” Thin Solid Films 519(13), 4390–4393 (2011).
[CrossRef]

Dai, Y. A.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

El-Saeid, A.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Gremenok, V.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Guillén, C.

R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
[CrossRef]

Gutiérrez, M.

R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
[CrossRef]

Han, H. V.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

He, J. H.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Hsieh, D. H.

Hsieh, M. Y.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Huang, C. H.

C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
[CrossRef]

Huang, H. J.

Hwang, C.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Kao, M. H.

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Kaufmann, C. A.

R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
[CrossRef]

Kieven, D.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Kim, J. H.

S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
[CrossRef] [PubMed]

Klenk, R.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Kuo, H. C.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Kuo, H.-C.

Kuo, L. C.

Kuo, S. Y.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

Y. K. Liao, S. Y. Kuo, W. T. Lin, F. I. Lai, D. H. Hsieh, M. A. Tsai, S. C. Chen, D. W. Chiou, J. C. Chang, K. H. Wu, S. J. Cheng, and H.-C. Kuo, “Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells,” Opt. Express 20(S6), A836–A842 (2012).
[CrossRef]

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Lai, F. I.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

Y. K. Liao, S. Y. Kuo, W. T. Lin, F. I. Lai, D. H. Hsieh, M. A. Tsai, S. C. Chen, D. W. Chiou, J. C. Chang, K. H. Wu, S. J. Cheng, and H.-C. Kuo, “Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells,” Opt. Express 20(S6), A836–A842 (2012).
[CrossRef]

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Lee, T. I.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Liao, Y. K.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

Y. K. Liao, S. Y. Kuo, W. T. Lin, F. I. Lai, D. H. Hsieh, M. A. Tsai, S. C. Chen, D. W. Chiou, J. C. Chang, K. H. Wu, S. J. Cheng, and H.-C. Kuo, “Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells,” Opt. Express 20(S6), A836–A842 (2012).
[CrossRef]

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Lin, C. A.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Lin, W. T.

Liu, R. S.

Liu, X.

Lu, Y.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Lux-Steiner, M. C.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Mackie, D.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Martin, R.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Moller, H.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Morris, G. M.

Myoung, J. M.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Noh, B. Y.

S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
[CrossRef] [PubMed]

Noh, G.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Nur, O.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Park, I. K.

S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
[CrossRef] [PubMed]

Raguin, D. H.

Rissom, T.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Salama, A.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Saraf, G.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Schmitz, W.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Shen, H.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Shieh, H. P.

Y. C. Wang and H. P. Shieh, “Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process,” Appl. Phys. Lett. 103(15), 153502 (2013).
[CrossRef]

Shin, B. K.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Song, J. J.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Tan, X. H.

Tang, Y.

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Thornton, B.

Tsai, D. P.

Tsai, M. A.

Tseng, M. L.

Wahab, H.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Wang, Y. C.

Y. C. Wang and H. P. Shieh, “Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process,” Appl. Phys. Lett. 103(15), 153502 (2013).
[CrossRef]

Willander, M.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Wong, M. S.

C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
[CrossRef]

Wu, K. H.

Xiong, J.

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

Yang, J. F.

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

Ye, S. L.

Zalesski, V.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Zaretskaya, E.

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Zhong, J.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007).
[CrossRef]

Y. C. Wang and H. P. Shieh, “Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process,” Appl. Phys. Lett. 103(15), 153502 (2013).
[CrossRef]

J. Electrochem. Soc.

C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011).
[CrossRef]

J. Mater. Chem.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012).
[CrossRef]

Nanoscale

M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012).
[CrossRef] [PubMed]

Opt. Express

Prog. Photovolt. Res. Appl.

R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006).
[CrossRef]

L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010).
[CrossRef]

Result Phys.

H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013).
[CrossRef]

Sol. Energy Mater. Sol. Cells

B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011).
[CrossRef]

V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005).
[CrossRef]

Thin Solid Films

I. H. Choi, “Raman spectroscopy of CuIn1 − xGaxSe2 for in-situ monitoring of the composition ratio,” Thin Solid Films 519(13), 4390–4393 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of reflectance and transmittance analyses for (a) CIGSe solar cells and (b) AZO-coated SLG substrates covered with ZnO nanorods, respectively. (c) The structure of CIGSe device with Al contact and ZnO NR used for J-V characteristics.

Fig. 2
Fig. 2

SEM micrographs of (a) as-fabricated CIGSe devices and after the growth of ZnO nanorods for (b) 8, (c) 11, (d) 14, and (e) 25 minutes.

Fig. 3
Fig. 3

X-ray diffraction patterns of (a) CIGSe absorber, and (b) bare AZO thin film covered with ZnO nanorods. Inset in Fig. 3(a) shows Raman scans of CIGSe absorber.

Fig. 4
Fig. 4

Wavelength-dependent refractive index profiles of (a) AZO, (b) Bottom-NR, and (c) Top-NR areas for the AZO film covered with ZnO nanorods.

Fig. 5
Fig. 5

(a) Surface reflectance of the as-fabricated CIGSe solar cell and covered with ZnO nanorods, and (b) transmittance analyses of AZO/NR thin films. The absorbance of ZnO nanorods is shown in the inset of Fig. 5(b).

Fig. 6
Fig. 6

J–V characteristics of the bare CIGSe device and the devices with ZnO nanorods.

Tables (1)

Tables Icon

Table 1 The photovoltaic performances of the CIGSe solar cells with different conditions of ZnO nanorods antireflection coatings

Metrics