Abstract

Applying the photoexcitation characteristics of vanadium dioxide (VO2), a dynamic resonant terahertz (THz) functional device with the combination of VO2 film and dual-resonance metamaterial was suggested to realize the ultrafast external spatial THz wave active manipulation. The designed metamaterial realizes a pass band at 0.28–0.36 THz between the dual-resonant frequencies, and the VO2 film is applied to control the transmittance of the spatial THz wave. More than an 80% modulation depth has been observed in the statics experiment, and the dynamic experimental results illustrate that this active metamaterial realizes up to a 1 MHz amplitude modulation signal loaded on a 0.34 THz carrier wave without any low noise amplified devices. The electromagnetic properties and photoinduced dynamic characteristics of this structure may have many potential applications in THz functional components, including modulators, intelligent switches, and sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory 50(3), 910–928 (2002).
    [CrossRef]
  4. B. B. Hu, M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  6. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [CrossRef]
  7. J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [CrossRef]
  8. T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
    [CrossRef]
  9. A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
    [CrossRef]
  10. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  11. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  12. H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
    [CrossRef]
  13. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  14. H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
    [CrossRef]
  15. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
    [CrossRef] [PubMed]
  16. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
    [CrossRef] [PubMed]
  17. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
    [CrossRef] [PubMed]
  18. W. Withayachumnankul, D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
    [CrossRef]
  19. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  20. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
    [CrossRef]
  21. Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
    [CrossRef]
  22. Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
    [CrossRef]
  23. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [CrossRef] [PubMed]
  24. Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
    [CrossRef] [PubMed]
  25. G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
    [CrossRef]
  26. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [CrossRef] [PubMed]
  27. M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
    [CrossRef]
  28. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
    [CrossRef]
  29. Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
    [CrossRef]
  30. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
    [CrossRef]
  31. Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).
  32. Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
    [CrossRef] [PubMed]
  33. Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
    [CrossRef]
  34. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
    [CrossRef]
  35. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
    [CrossRef]

2013

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

2012

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

2011

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

2010

Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[CrossRef]

J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

2009

T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
[CrossRef]

W. Withayachumnankul, D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[CrossRef]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[CrossRef]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

2008

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

2007

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

2006

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

2004

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

2003

2002

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory 50(3), 910–928 (2002).
[CrossRef]

1996

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

1995

Abbott, D.

W. Withayachumnankul, D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[CrossRef]

Ahn, K. J.

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Ahn, Y. H.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Becker, M. F.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

Bernien, H.

Bingham, C.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Bingham, C. M.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Bonn, M.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Brun, A.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

Buckman, A. B.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[CrossRef]

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[CrossRef]

Choi, J. W.

Choi, S. B.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[CrossRef]

Cummer, S. A.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Dong, K.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Economou, E. N.

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Federici, J.

J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Ferguson, B.

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Fernández, F.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

Furuta, T.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Georges, P.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Gómez Rivas, J.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Gopalakrishnan, G.

G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[CrossRef]

Gossard, A. C.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Hand, T. H.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Hendry, E.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Hirata, A.

T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
[CrossRef]

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Hiroi, Z.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

Hu, B. B.

Huang, W. X.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Inoue, H.

Ito, H.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Jeong, Y. G.

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[CrossRef]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Kado, Y.

T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
[CrossRef]

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

Kawase, K.

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Kim, B. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Kim, D. S.

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Kim, H. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

Kim, H. T.

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Koschny, T.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

Kosugi, T.

T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
[CrossRef]

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Kuipers, L.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Kyoung, J. S.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

Landy, N. I.

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Lépine, T.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

Li, L.

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

Ling, W.

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

Liu, H.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Liu, S.-

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

Liu, S. G.

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

Lockyear, M. J.

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Lysenko, S.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Mao, M.

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Moeller, L.

J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

Nagatsuma, T.

T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
[CrossRef]

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Nakajima, F.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Nakajima, M.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Nuss, M. C.

O’Hara, J. F.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

Ogawa, Y.

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Ozbay, E.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Park, D. J.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Park, H. R.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, D. S. Kim, “Electrical control of terahertz nano antennas on VO2 thin film,” Opt. Express 19(22), 21211–21215 (2011).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Qiao, S.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

Qiu, D. H.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

Ramanathan, S.

G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[CrossRef]

Rotermund, F.

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Rout, S.

Rúa, A.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

Ruzmetov, D.

G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[CrossRef]

Sato, Y.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Shen, H.

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

Shen, N. H.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Shi, Q. W.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Shrekenhamer, D.

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory 50(3), 910–928 (2002).
[CrossRef]

Smith, D. R.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Sonkusale, S.

Soukoulis, C. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

Suemoto, T.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

Sugahara, H.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Sun, D. D.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Takahashi, H.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Takubo, N.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tu, M. J.

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Tyler, T.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Ueda, Y.

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

Vikhnin, V.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

Walser, R. M.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

Watanabe, Y.

Wen, Q. Y.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul, D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[CrossRef]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Wu, J.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Xu, Y. J.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Yamaguchi, R.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

Yan, J. Z.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Yuan, Y.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

Zhang, H. W.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

Zhang, L.

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Zhang, X. C.

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zhang, Y.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Zhang, Y. B.

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Zhang, Y. X.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Zhao, T.

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

Zide, J. M. O.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces

Q. W. Shi, W. X. Huang, Y. X. Zhang, J. Z. Yan, Y. B. Zhang, M. Mao, Y. Zhang, M. J. Tu, “Giant phase transition properties at terahertz range in VO₂ films deposited by sol-gel method,” ACS Appl. Mater. Interfaces 3(9), 3523–3527 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. X. Zhang, S. Qiao, W. X. Huang, W. Ling, L. Li, S.- Liu, “Asymmetric single-particle triple-resonant metamaterial in terahertz band,” Appl. Phys. Lett. 99(7), 073111 (2011).
[CrossRef]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O’Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93(19), 191110 (2008).
[CrossRef]

M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, “Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy,” Appl. Phys. Lett. 92(1), 011907 (2008).
[CrossRef]

S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B. J. Kim, Y. H. Ahn, F. Rotermund, H. T. Kim, K. J. Ahn, K. J. Ahn, D. S. Kim, “Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film,” Appl. Phys. Lett. 98(7), 071105 (2011).
[CrossRef]

Chin. Phys. Lett.

Z. Chen, Q. Y. Wen, K. Dong, D. D. Sun, D. H. Qiu, H. W. Zhang, “Ultrafast and broadband terahertz switching based on photo-induced phase transition in vanadium dioxide films,” Chin. Phys. Lett. 30(1), 017102 (2013).
[CrossRef]

IEEE Microw. Mag.

T. Kosugi, A. Hirata, T. Nagatsuma, Y. Kado, “MM-wave long-range wireless systems,” IEEE Microw. Mag. 10(2), 68–76 (2009).
[CrossRef]

IEEE Photonics J.

W. Withayachumnankul, D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J. 1(2), 99–118 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, T. Nagatsuma, “120-GHz-band millimeter-wave photonic wireless link for 10-Gbit/s data transmission,” IEEE Trans. Microw. Theory Tech. 54(5), 1937–1944 (2006).
[CrossRef]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[CrossRef]

IEEE Trans. Microwave Theory

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory 50(3), 910–928 (2002).
[CrossRef]

J. Appl. Phys.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, A. Brun, “Femtosecond laser excitation dynamics of the semiconductormetal phase transition in VO2,” J. Appl. Phys. 79(5), 2404–2408 (1996).
[CrossRef]

J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[CrossRef]

J. Mater. Sci.

Q. W. Shi, W. X. Huang, J. Wu, Y. X. Zhang, Y. J. Xu, Y. Zhang, S. Qiao, J. Z. Yan, “Enhanced hydrophilicity of the Si substrate for deposition of VO2 film by sol–gel method,” J. Mater. Sci. 23, 1610–1615 (2012).

G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, “On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects,” J. Mater. Sci. 44(19), 5345–5353 (2009).
[CrossRef]

Nat. Commun.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780 (2012).
[CrossRef] [PubMed]

Nat. Mater.

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Nature

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

New J. Phys.

Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E. N. Economou, C. M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79(16), 161102 (2009).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[CrossRef]

E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Phys. Rev. Lett.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett. 106(3), 037403 (2011).
[CrossRef] [PubMed]

Prog. Electromagnetics Res.

Y. X. Zhang, S. Qiao, T. Zhao, W. Ling, S. G. Liu, “Planar symmetric normal and complementary three-resonance resonators in terahertz band,” Prog. Electromagnetics Res. 125, 21–35 (2012).
[CrossRef]

Science

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The structure of DMVS. (a) The 3-D model of one unit. (b) The surface of VO2 film. (c) The manufactured unit. (d) The manufactured array.

Fig. 2
Fig. 2

Computer simulation results of DMVS structure. (a) The contour map at 0.21THz. (b) The surface current at 0.21THz. (c) The contour map at 0.53THz. (d) The surface current at 0.53THz.

Fig. 3
Fig. 3

Simulation and TDS experiment results of transmittance depends on frequency of this structure.

Fig. 4
Fig. 4

The 3D-sketch map of the experiment with pump laser.

Fig. 5
Fig. 5

The external 808 nm laser pump static experimental results with TDS system and single frequency source. (a) The time domain waveforms of transmitted THz wave tested by TDS system with different incident laser power. (b) The FFT of time domain waveforms tested by TDS. (c) The transmittance tested by 0.34THz single frequency source with different incident laser power.

Fig. 6
Fig. 6

Resistivity curve induced by temperature and external laser. (a) Hysteresis loop of the resistivity against temperature for the VO2 film across the phase transition. (b) Resistivity changing with external laser power.

Fig. 7
Fig. 7

The dynamic experiment setup.

Fig. 8
Fig. 8

Signal detected by the detector.

Tables (1)

Tables Icon

Table 1 Parameters of the DMVS

Metrics