Abstract

The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Horvath, D. Varju, Polarized light in animal vision: Polarization patterns in nature (Springer, 2004).
    [CrossRef]
  2. I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.
  3. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
    [CrossRef] [PubMed]
  4. T. M. Jordan, J. C. Partridge, N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6, 759–763 (2012).
    [CrossRef] [PubMed]
  5. M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
    [CrossRef] [PubMed]
  6. G. T. D. Francia, “Retina cones as dielectric antennas,” J. Opt. Soc. Am. 39, 324 (1949).
    [CrossRef]
  7. R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy,” J. Biophys. Biochem. Cytol. 3, 15–30 (1957).
    [CrossRef] [PubMed]
  8. J. M. Enoch, “Optical properties of the retinal photoreceptors,” J. Opt. Soc. Am. 53, 71–85 (1963).
    [CrossRef]
  9. W. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. B 123, 90–118 (1937).
    [CrossRef]
  10. G. Westheimer, “Directional sensitivity of the retina: 75 years of stiles-crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
    [CrossRef] [PubMed]
  11. M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
    [CrossRef] [PubMed]
  12. K. Arnold, C. Neumeyer, “Wavelength discrimination in the turtle pseudemys scripta elegans,” Vision Res. 27, 1501–1511 (1987).
    [CrossRef] [PubMed]
  13. J. Bowmaker, “Colour vision in birds and the role of oil droplets,” Trends in Neurosciences 3, 196–199 (1980).
    [CrossRef]
  14. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
    [CrossRef] [PubMed]
  15. V. Govardovskii, “On the role of oil drops in colour vision,” Vision Res. 23, 1739–1740 (1983).
    [CrossRef] [PubMed]
  16. M. Vorobyev, “Coloured oil droplets enhance colour discrimination,” Proc. Biol. Sci. 270, 1255–1261 (2003).
    [CrossRef] [PubMed]
  17. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
    [CrossRef]
  18. I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
    [CrossRef] [PubMed]
  19. D. Comings, “Arrangement of chromatin in the nucleus,” Hum. Genet. 53, 131–143 (1980).
    [CrossRef] [PubMed]
  20. S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
    [CrossRef] [PubMed]
  21. K. Finan, P. R. Cook, D. Marenduzzo, “Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes,” Chromosome Res. 19, 53–61 (2011).
    [CrossRef]
  22. T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
    [CrossRef] [PubMed]
  23. M. Kreysing, L. Boyde, J. Guck, K. J. Chalut, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).
    [CrossRef] [PubMed]
  24. P. Sarthy, D. M. Lam, “Isolated cells from the mammalian retina,” Brain Res. 176, 208–212 (1979).
    [CrossRef] [PubMed]
  25. K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
    [CrossRef]
  26. R. Barer, S. Joseph, “Refractometry of living cells part I. Basic principles,” Q. J. Microsc. Sci. 95, 399–423 (1954).
  27. Y. Sun, S. Duthaler, B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139–149 (2004).
    [CrossRef] [PubMed]
  28. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
    [CrossRef]
  29. J. Bowmaker, H. J. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501–511 (1980).
    [PubMed]
  30. E. N. Pugh, T. D. Lamb, “Amplification and kinetics of the activation steps in phototransduction,” Biochim. Biophys. Acta 1141, 111–149 (1993).
    [CrossRef] [PubMed]
  31. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
    [CrossRef] [PubMed]
  32. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
    [CrossRef] [PubMed]

2012 (4)

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

T. M. Jordan, J. C. Partridge, N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6, 759–763 (2012).
[CrossRef] [PubMed]

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

2011 (2)

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

K. Finan, P. R. Cook, D. Marenduzzo, “Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes,” Chromosome Res. 19, 53–61 (2011).
[CrossRef]

2010 (2)

M. Kreysing, L. Boyde, J. Guck, K. J. Chalut, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

2009 (2)

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
[CrossRef] [PubMed]

2008 (1)

G. Westheimer, “Directional sensitivity of the retina: 75 years of stiles-crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
[CrossRef] [PubMed]

2004 (1)

Y. Sun, S. Duthaler, B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139–149 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Vorobyev, “Coloured oil droplets enhance colour discrimination,” Proc. Biol. Sci. 270, 1255–1261 (2003).
[CrossRef] [PubMed]

1994 (1)

M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
[CrossRef] [PubMed]

1993 (1)

E. N. Pugh, T. D. Lamb, “Amplification and kinetics of the activation steps in phototransduction,” Biochim. Biophys. Acta 1141, 111–149 (1993).
[CrossRef] [PubMed]

1987 (1)

K. Arnold, C. Neumeyer, “Wavelength discrimination in the turtle pseudemys scripta elegans,” Vision Res. 27, 1501–1511 (1987).
[CrossRef] [PubMed]

1983 (1)

V. Govardovskii, “On the role of oil drops in colour vision,” Vision Res. 23, 1739–1740 (1983).
[CrossRef] [PubMed]

1982 (1)

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

1980 (3)

J. Bowmaker, “Colour vision in birds and the role of oil droplets,” Trends in Neurosciences 3, 196–199 (1980).
[CrossRef]

D. Comings, “Arrangement of chromatin in the nucleus,” Hum. Genet. 53, 131–143 (1980).
[CrossRef] [PubMed]

J. Bowmaker, H. J. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501–511 (1980).
[PubMed]

1979 (1)

P. Sarthy, D. M. Lam, “Isolated cells from the mammalian retina,” Brain Res. 176, 208–212 (1979).
[CrossRef] [PubMed]

1972 (1)

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

1963 (1)

1957 (1)

R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy,” J. Biophys. Biochem. Cytol. 3, 15–30 (1957).
[CrossRef] [PubMed]

1954 (1)

R. Barer, S. Joseph, “Refractometry of living cells part I. Basic principles,” Q. J. Microsc. Sci. 95, 399–423 (1954).

1949 (1)

1937 (1)

W. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. B 123, 90–118 (1937).
[CrossRef]

Ahmad, K.

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Arnold, K.

K. Arnold, C. Neumeyer, “Wavelength discrimination in the turtle pseudemys scripta elegans,” Vision Res. 27, 1501–1511 (1987).
[CrossRef] [PubMed]

Barer, R.

R. Barer, S. Joseph, “Refractometry of living cells part I. Basic principles,” Q. J. Microsc. Sci. 95, 399–423 (1954).

Barlow, H. B.

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

Bennett, A. T.

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Bisseling, T.

S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
[CrossRef] [PubMed]

Bowmaker, J.

J. Bowmaker, “Colour vision in birds and the role of oil droplets,” Trends in Neurosciences 3, 196–199 (1980).
[CrossRef]

J. Bowmaker, H. J. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501–511 (1980).
[PubMed]

Bowmaker, J. K.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Boyde, L.

Chalut, K. J.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

M. Kreysing, L. Boyde, J. Guck, K. J. Chalut, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).
[CrossRef] [PubMed]

Church, S. C.

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Clegg, W. L.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

Comings, D.

D. Comings, “Arrangement of chromatin in the nucleus,” Hum. Genet. 53, 131–143 (1980).
[CrossRef] [PubMed]

Cook, P. R.

K. Finan, P. R. Cook, D. Marenduzzo, “Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes,” Chromosome Res. 19, 53–61 (2011).
[CrossRef]

Cremer, T.

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Cuthill, I. C.

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Dartnall, H. J.

J. Bowmaker, H. J. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501–511 (1980).
[PubMed]

de Nooijer, S.

S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
[CrossRef] [PubMed]

Dubra, A.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Duthaler, S.

Y. Sun, S. Duthaler, B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139–149 (2004).
[CrossRef] [PubMed]

Easter, S. S.

M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
[CrossRef] [PubMed]

Ekpenyong, A. E.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

Engelmann, J.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Engheta, N.

M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
[CrossRef] [PubMed]

Enoch, J. M.

Finan, K.

K. Finan, P. R. Cook, D. Marenduzzo, “Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes,” Chromosome Res. 19, 53–61 (2011).
[CrossRef]

Foja, C.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Francia, G. T. D.

Francke, M.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Franze, K.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Fraser, P.

T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
[CrossRef] [PubMed]

Gasser, S. M.

T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
[CrossRef] [PubMed]

Geng, Y.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Govardovskii, V.

V. Govardovskii, “On the role of oil drops in colour vision,” Vision Res. 23, 1739–1740 (1983).
[CrossRef] [PubMed]

Grosche, J.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Guck, J.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

M. Kreysing, L. Boyde, J. Guck, K. J. Chalut, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).
[CrossRef] [PubMed]

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Hart, N. S.

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Haverkate, D.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Horvath, G.

G. Horvath, D. Varju, Polarized light in animal vision: Polarization patterns in nature (Springer, 2004).
[CrossRef]

Hunt, S.

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Joffe, B.

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Jordan, T. M.

T. M. Jordan, J. C. Partridge, N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6, 759–763 (2012).
[CrossRef] [PubMed]

Joseph, S.

R. Barer, S. Joseph, “Refractometry of living cells part I. Basic principles,” Q. J. Microsc. Sci. 95, 399–423 (1954).

Kacza, J.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Kösem, S.

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Kreysing, M.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

M. Kreysing, L. Boyde, J. Guck, K. J. Chalut, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).
[CrossRef] [PubMed]

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Lam, D. M.

P. Sarthy, D. M. Lam, “Isolated cells from the mammalian retina,” Brain Res. 176, 208–212 (1979).
[CrossRef] [PubMed]

Lamb, T. D.

E. N. Pugh, T. D. Lamb, “Amplification and kinetics of the activation steps in phototransduction,” Biochim. Biophys. Acta 1141, 111–149 (1993).
[CrossRef] [PubMed]

Lanctôt, C.

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Land, M. F.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Landsberger, M.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Libby, R. T.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Makarov, F.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Marenduzzo, D.

K. Finan, P. R. Cook, D. Marenduzzo, “Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes,” Chromosome Res. 19, 53–61 (2011).
[CrossRef]

Melhuish, I. C.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

Merigan, W. H.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Mora-Ferrer, C.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Mulder, B.

S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
[CrossRef] [PubMed]

Nelson, B. J.

Y. Sun, S. Duthaler, B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139–149 (2004).
[CrossRef] [PubMed]

Neumeyer, C.

K. Arnold, C. Neumeyer, “Wavelength discrimination in the turtle pseudemys scripta elegans,” Vision Res. 27, 1501–1511 (1987).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Partridge, J. C.

T. M. Jordan, J. C. Partridge, N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6, 759–763 (2012).
[CrossRef] [PubMed]

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Peichl, L.

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Pugh, E. N.

M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
[CrossRef] [PubMed]

E. N. Pugh, T. D. Lamb, “Amplification and kinetics of the activation steps in phototransduction,” Biochim. Biophys. Acta 1141, 111–149 (1993).
[CrossRef] [PubMed]

Pusch, R.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Reichenbach, A.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Roberts, N. W.

T. M. Jordan, J. C. Partridge, N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6, 759–763 (2012).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Rowe, M. P.

M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
[CrossRef] [PubMed]

Ruiter, J.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Sarthy, P.

P. Sarthy, D. M. Lam, “Isolated cells from the mammalian retina,” Brain Res. 176, 208–212 (1979).
[CrossRef] [PubMed]

Schery, L. A.

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Schild, D.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Schinkinger, S.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Schober, H.

T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
[CrossRef] [PubMed]

Schumacher, S.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Schuster, S.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Sexton, T.

T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
[CrossRef] [PubMed]

Sharma, R.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Sidman, R. L.

R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy,” J. Biophys. Biochem. Cytol. 3, 15–30 (1957).
[CrossRef] [PubMed]

Skatchkov, S. N.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Solovei, I.

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Stiles, W.

W. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. B 123, 90–118 (1937).
[CrossRef]

Streif, S.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun, S. Duthaler, B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139–149 (2004).
[CrossRef] [PubMed]

Travis, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Uckermann, O.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Ulbricht, E.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Varju, D.

G. Horvath, D. Varju, Polarized light in animal vision: Polarization patterns in nature (Springer, 2004).
[CrossRef]

von der Emde, G.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Vorobyev, M.

M. Vorobyev, “Coloured oil droplets enhance colour discrimination,” Proc. Biol. Sci. 270, 1255–1261 (2003).
[CrossRef] [PubMed]

Wagner, H.-J.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Wellink, J.

S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “Directional sensitivity of the retina: 75 years of stiles-crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
[CrossRef] [PubMed]

Williams, D. R.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Wolburg, H.

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Yin, L.

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

E. N. Pugh, T. D. Lamb, “Amplification and kinetics of the activation steps in phototransduction,” Biochim. Biophys. Acta 1141, 111–149 (1993).
[CrossRef] [PubMed]

Biomed. Opt. Express. (2)

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express. 2, 717–738 (2011).
[CrossRef] [PubMed]

Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express. 3, 715–734 (2012).
[CrossRef] [PubMed]

Brain Res. (1)

P. Sarthy, D. M. Lam, “Isolated cells from the mammalian retina,” Brain Res. 176, 208–212 (1979).
[CrossRef] [PubMed]

Cell (1)

I. Solovei, M. Kreysing, C. Lanctôt, S. Kösem, L. Peichl, T. Cremer, J. Guck, B. Joffe, “Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution,” Cell 137, 356–368 (2009).
[CrossRef] [PubMed]

Chromosome Res. (1)

K. Finan, P. R. Cook, D. Marenduzzo, “Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes,” Chromosome Res. 19, 53–61 (2011).
[CrossRef]

Computer Physics Communications (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[CrossRef]

Hum. Genet. (1)

D. Comings, “Arrangement of chromatin in the nucleus,” Hum. Genet. 53, 131–143 (1980).
[CrossRef] [PubMed]

Integr. Biol. (Camb) (1)

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb) 4, 280–284 (2012).
[CrossRef]

J. Biophys. Biochem. Cytol. (1)

R. L. Sidman, “The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy,” J. Biophys. Biochem. Cytol. 3, 15–30 (1957).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. (1)

M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, “Graded-index model of a fish double cone exhibits differential polarization sensitivity,” J. Opt. Soc. Am. A. Opt. Image. Sci. Vis. 11, 55–70 (1994).
[CrossRef] [PubMed]

J. Physiol. (1)

J. Bowmaker, H. J. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. 298, 501–511 (1980).
[PubMed]

Microsc. Res. Tech. (1)

Y. Sun, S. Duthaler, B. J. Nelson, “Autofocusing in computer microscopy: selecting the optimal focus algorithm,” Microsc. Res. Tech. 65, 139–149 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. M. Jordan, J. C. Partridge, N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6, 759–763 (2012).
[CrossRef] [PubMed]

Nature Structural and Molecular Biology (1)

T. Sexton, H. Schober, P. Fraser, S. M. Gasser, “Gene regulation through nuclear organization,” Nature Structural and Molecular Biology 14, 1049–1055 (2007).
[CrossRef] [PubMed]

Nucleic. Acids. Res. (1)

S. de Nooijer, J. Wellink, B. Mulder, T. Bisseling, “Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei,” Nucleic. Acids. Res. 37, 3558–3568 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. Biol. Sci. (2)

G. Westheimer, “Directional sensitivity of the retina: 75 years of stiles-crawford effect,” Proc. Biol. Sci. 275, 2777–2786 (2008).
[CrossRef] [PubMed]

M. Vorobyev, “Coloured oil droplets enhance colour discrimination,” Proc. Biol. Sci. 270, 1255–1261 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
[CrossRef]

Proc. R. Soc. B (1)

W. Stiles, “The luminous efficiency of monochromatic rays entering the eye pupil at different points and a new colour effect,” Proc. R. Soc. B 123, 90–118 (1937).
[CrossRef]

Prog. Biophys. Mol. Biol. (1)

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Q. J. Microsc. Sci. (1)

R. Barer, S. Joseph, “Refractometry of living cells part I. Basic principles,” Q. J. Microsc. Sci. 95, 399–423 (1954).

Science (1)

M. Kreysing, R. Pusch, D. Haverkate, M. Landsberger, J. Engelmann, J. Ruiter, C. Mora-Ferrer, E. Ulbricht, J. Grosche, K. Franze, S. Streif, S. Schumacher, F. Makarov, J. Kacza, J. Guck, H. Wolburg, J. K. Bowmaker, G. von der Emde, S. Schuster, H.-J. Wagner, A. Reichenbach, M. Francke, “Photonic crystal light collectors in fish retina improve vision in turbid water,” Science 336, 1700–1703 (2012).
[CrossRef] [PubMed]

Trends in Neurosciences (1)

J. Bowmaker, “Colour vision in birds and the role of oil droplets,” Trends in Neurosciences 3, 196–199 (1980).
[CrossRef]

Vision Res. (3)

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vision Res. 22, 635–643 (1982).
[CrossRef] [PubMed]

V. Govardovskii, “On the role of oil drops in colour vision,” Vision Res. 23, 1739–1740 (1983).
[CrossRef] [PubMed]

K. Arnold, C. Neumeyer, “Wavelength discrimination in the turtle pseudemys scripta elegans,” Vision Res. 27, 1501–1511 (1987).
[CrossRef] [PubMed]

Other (2)

G. Horvath, D. Varju, Polarized light in animal vision: Polarization patterns in nature (Springer, 2004).
[CrossRef]

I. C. Cuthill, J. C. Partridge, A. T. Bennett, S. C. Church, N. S. Hart, S. Hunt, “Ultraviolet vision in birds,” (Academic Press, 2000), pp. 159–214.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Phase contrast images of the dissociated retina samples. Mouse PRC nuclei are easily discernible in (a) as round, bright, homogenous circles in phase contrast. Pig PRC nuclei in (b) show an elliptical shape and a heterogenous distribution of light and dark parts. Scale bar in both images is 20μm.

Fig. 2
Fig. 2

Light focusing by individual PRC nuclei. (a–b) Phase contrast images of representative nuclei and the xz reconstructions of the intensity maps for adult mouse (a) and porcine (b) nuclei. In xz reconstructions light is incident from the top and travels in downward z direction. Green circle and ellipse indicate the position and size of the mouse and pig nuclei respectively. Green line indicates the focus point for measuring the effective focal length. Scale bas in phase contrast images are 5 μm. c) Three dimensional reconstruction of the foci generated by adult mouse nuclei. Light is incident at the top and travels in downward z direction. The top plane shows a nucleus cluster in focus; below it is the light field reconstructed by generating isosurfaces at four intensities. d) Effective focal lengths of photoreceptor cell nuclei of three different species. The number of nuclei measured varied between species and is indicated for each animal by n. Dots in the bar graph are individual measurements. The difference between conventional and inverted patterns is statistically significant at the p = 0.05 level.

Fig. 3
Fig. 3

Simulated light distribution for a slit and step function phase profile. In (a) light incident from the top passes through a slit whose dimensions are indicated by the space between the blue rectangles. In (b) the slit is replaced by step function phase profile where light is retarded by −π. The higher intensity region in the both diffraction patterns are the same and are a result of light diffraction from the edges.

Fig. 4
Fig. 4

Modelling an adult mouse nucleus in FDTD simulations. (a) Representative phase contrast image and xz reconstruction of experimentally measured intensity map of an adult mouse nucleus. (b–c) FDTD simulations most closely matching experimental light fields. (b) Three-dimensional simulation of an inverted nucleus using a spherical core-shell model shows good agreement with experiment. Here rc = 4μm and rs = 5μm. (c) The same model implemented in two-dimensions shows a longer focal length but captures main optical behviour of an adult mouse nucleus. Green circles in xz reconstructions indicate the position and size of the nuclei or nuclear models, green line indicates the focus plane. Scale bar in phase contrast image is 5 μm.

Fig. 5
Fig. 5

Modelling the porcine nucleus in FDTD simulations. (a) Representative phase contrast image and xz reconstruction of experimentally measured intensity map of a porcine nucleus. (b–e) Three different models of the pig nucleus were investigated in FDTD simulations: simple spherical core-shell model in two dimensions (b); ellipse model with irregular interface between euchromatin and heterochromatin in two dimensions (c); prolate spheroid model in three dimensions with major axis normal (d) and parallel (e) to incident light direction. Green ellipses in xz reconstructions indicate the position and size of the nuclei or nuclear models while blue line indicates interface between water and glass in the simulation. Scale bar in phase contrast image is 5μm.

Fig. 6
Fig. 6

Robustness of the inverted nucleus model. (a,b) The effect of varying the core (rc) and the shell (rs) radii of the nuclear mimic in FDTD simulations. The refractive index values of the core (nc) and shell (ns) are kept constant as are the total dimensions of the model (indicated by the circumference of the green circle). (a) rc = 4.6μm and rs = 5.0μm (b) rc = 3.4μm and rs = 5.0μm. Changing the radii influences the light distribution in the vicinity of the nucleus but has no effect on the focal length (indicated by the green lines). (c,d) The effect of varying nc and ns on the light distribution while keeping nc : ns = 1.019 constant. Increasing the refractive index values of the core and shell (indicated by the saturation of the red and green circles) leads to a shorter focal length, a narrower focus and a shortened extent of the focus. In all simulations light is incident from the top and refractive indices are given as relative values.

Fig. 7
Fig. 7

Parameter space exploration of inverted nuclei models used in FDTD simulations. The refractive index values of the core (nc) and shell (ns), which represent regions of euchromatin and heterochromatin respectively are increased from (a–d). As refractive indices increase the extent of the focus gets smaller and narrower while the effective focal length shortens. rs = 5.0μm and rc = 4.0μm for all shown models. Here all refractive indices are given as relative values.

Fig. 8
Fig. 8

Determining refractive index of silica microspheres - Method 1. The refractive index can be measured by fitting an integrated Gaussian function (also known as an error function) to a plot of the observed fraction of dark silica beads vs. the refractive index of the suspension medium. The inflection point occurs when the RI of the suspension medium matches the RI of the microspheres. Here, the inflection point of the Boltzmann fit corresponds to n = 1.4201 with R2 = 0.999 and σ = 0.002.

Fig. 9
Fig. 9

Determining refractive index of microspheres - Method 2. (a,b) show experimental xz intensity maps for a 5μm silica bead suspended in (a) water and (b) oil with refractive index n = 1.51. The green horizontal line indicates the focus point and the green circle shows the position and extent of the microsphere. Light incidence position and direction indicated by arrows. The focus point in (b) is an imaginary focus resulting from the diverging lens behaviour of a bead suspended in a medium with a refractive index higher than the bead’s. The refractive index of the bead can be determined by suspending the beads in media with different RI and checking whether the focus in the intensity map is below or above the bead.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = I max I ¯ .
F = 1 H W μ W H ( I ( x , y ) μ ) 2

Metrics