Abstract

Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter (DOAP) was presented for the first time to our knowledge. The optimal parameters for the beam splitter are Tp = 78.9%, Ts = 21.1% and Δr − Δt = π/2 at 532nm at an angle of incidence of 45°. Multilayer anti-reflection coating with low phase shift was applied to reduce the backside reflection. Different design strategies that can achieve all optimal targets at the wavelength were tested. Two design methods were presented to optimize the differential phase shift. The samples were prepared by ion beam sputtering (IBS). The experimental results show good agreement with those of the design. The ellipsometric parameters of samples were measured in reflection (ψr, Δr) = (26.5°, 135.1°) and (28.2°, 133.5°), as well as in transmission (ψt, Δt) = (62.5°, 46.1°) and (63.5°, 46°) at 532.6nm. The normalized determinant of instrument matrix to evaluate the performance of samples is respectively 0.998 and 0.991 at 532.6nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Berry, G. Gabrielse, A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
    [CrossRef] [PubMed]
  2. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
    [CrossRef] [PubMed]
  3. B. Kanseri, S. Rath, H. C. Kandpal, “Direct determination of the generalized Stokes parameters from the usual Stokes parameters,” Opt. Lett. 34(6), 719–721 (2009).
    [CrossRef] [PubMed]
  4. T. Kihara, “Measurement method of Stokes parameters using a quarter-wave plate with phase difference errors,” Appl. Opt. 50(17), 2582–2587 (2011).
    [CrossRef] [PubMed]
  5. L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
    [CrossRef]
  6. R. M. A. Azzam, “Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light,” Opt. Acta (Lond.) 29(5), 685–689 (1982).
    [CrossRef]
  7. R. M. A. Azzam, A. De, “Optimal beam splitters for the division-of-amplitude photopolarimeter,” J. Opt. Soc. Am. A 20(5), 955–958 (2003).
    [CrossRef] [PubMed]
  8. R. M. A. Azzam, F. F. Sudradjat, “Single-layer-coated beam splitters for the division-of-amplitude photopolarimeter,” Appl. Opt. 44(2), 190–196 (2005).
    [CrossRef] [PubMed]
  9. R. M. A. Azzam, A. G. Lopez, “Accurate calibration of the four-detector photopolarimeter with imperfect polarizing optical elements,” J. Opt. Soc. Am. A 6(10), 1513–1521 (1989).
    [CrossRef]
  10. A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Software, http://www.optilayer.com .
  11. A. V. Tikhonravov, M. K. Trubetskov, G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
    [CrossRef] [PubMed]

2012

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

2011

2009

2005

2003

1999

1996

1989

1982

R. M. A. Azzam, “Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light,” Opt. Acta (Lond.) 29(5), 685–689 (1982).
[CrossRef]

1977

Adams, C. S.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

Azzam, R. M. A.

Berry, H. G.

Dalton, T.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

De, A.

Debell, G. W.

Gabrielse, G.

Gori, F.

Hughes, I. G.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

Kandpal, H. C.

Kanseri, B.

Kihara, T.

Livingston, A. E.

Lopez, A. G.

Rath, S.

Siddons, P.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

Sudradjat, F. F.

Tikhonravov, A. V.

Trubetskov, M. K.

Weller, L.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

J. Phys. At. Mol. Opt. Phys.

L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, “Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. At. Mol. Opt. Phys. 45(5), 055001 (2012).
[CrossRef]

Opt. Acta (Lond.)

R. M. A. Azzam, “Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light,” Opt. Acta (Lond.) 29(5), 685–689 (1982).
[CrossRef]

Opt. Lett.

Other

A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Software, http://www.optilayer.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of DOAP.

Fig. 2
Fig. 2

The structure of the designed beam splitter.

Fig. 3
Fig. 3

Structure and optical characteristics of the designed beam splitter (straight line) and the calculated deviations with a 1nm random thickness error (dash line) (a) structure (b) transmittance (c) Δ.

Fig. 4
Fig. 4

Structure and optical characteristics of designed beam splitter (straight line) and the calculated deviations with a 1nm random thickness error (dash line) (a) structure (b) transmittance (c) Δ.

Fig. 5
Fig. 5

Structure and optical characteristics of the designed anti-reflectance coating (a) structure (b) reflectance (c) Δt.

Fig. 6
Fig. 6

The measured transmittance and reflectance curves (a) Sample I (b) Sample II (c) Anti-reflection coating.

Fig. 7
Fig. 7

The measured ψr and ψt at different wavelengths (a) Sample I (b) Sample II.

Fig. 8
Fig. 8

The measured Δr and Δt at different wavelengths (a) Sample I (b) Sample II.

Fig. 9
Fig. 9

Δr – Δt of the beam splitter measured at different wavelengths.

Fig. 10
Fig. 10

Δt of anti-reflection coating measured at different wavelengths.

Fig. 11
Fig. 11

Normalized determinant of matrix (A) of the beam splitter at different wavelengths.

Tables (2)

Tables Icon

Table 1 Optical constants of Nb2O5 and SiO2 at different wavelengths

Tables Icon

Table 2 Design results with different values of Δt

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

det A = ( R T ) 2 sin 2 ψ r sin 2 ψ t ( cos 2 ψ r cos 2 ψ t ) sin ( Δ r Δ t )
R = T = 0.5 , Δ r Δ t = ± π / 2 ( ψ r , ψ t ) = ( 27.368 ° , 62.632 ° ) o r ( 62.632 ° , 27.368 ° )
| det A | n o r m = | det A | / | det A | max
MF1= 1 M p, s m=1 M ( T( λ m ) T (m) δ T (m) ) 2 + 1 M r, t m=1 M ( Δ( λ m ) Δ (m) δ Δ (m) ) 2
MF2= 1 M p, s m=1 M ( T( λ m ) T (m) δ T (m) ) 2 + 1 M m=1 M ( Δ rt ( λ m ) Δ rt (m) δ Δ rt (m) ) 2

Metrics