Abstract

We propose a real-time integral imaging system for light field microscopy systems. To implement a 3D live in-vivo experimental environment for multiple experimentalists, we generate elemental images for an integral imaging system from the captured light field with a light field microscope in real-time. We apply the f-number matching method to generate an elemental image to reconstruct an undistorted 3D image. Our implemented system produces real and orthoscopic 3D images of micro objects in 16 frames per second. We verify the proposed system via experiments using Caenorhabditis elegans.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Okano, J. Arai, H. Hoshino, I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
    [CrossRef]
  2. B. Javidi, S. Yeom, I. Moon, M. Daneshpanah, “Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events,” Opt. Express 14(9), 3806–3829 (2006).
    [CrossRef] [PubMed]
  3. W. J. Matusik, H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
    [CrossRef]
  4. F. Okano, H. Hoshino, J. Arai, I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  5. G. Li, K.-C. Kwon, K.-H. Yoo, S.-G. Gil, and N. Kim, “Real-time display for real-existing three-dimensional objects with computer-generated integral imaging,” in Proceeding of International Meeting on Information Display (IMID), Daegu, Korea, Aug. 2012 (Society for Information Display and Korean Society for Information Display, 2012), pp. 471–472.
  6. J. Arai, F. Okano, H. Hoshino, I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37(11), 2034–2045 (1998).
    [CrossRef] [PubMed]
  7. J. Arai, T. Yamashita, M. Miura, H. Hiura, N. Okaichi, F. Okano, R. Funatsu, “Integral three-dimensional image capture equipment with closely positioned lens array and image sensor,” Opt. Lett. 38(12), 2044–2046 (2013).
    [CrossRef] [PubMed]
  8. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
    [CrossRef] [PubMed]
  9. J.-H. Jung, J. Kim, B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett. 38(1), 76–78 (2013).
    [CrossRef] [PubMed]
  10. J. Kim, J.-H. Jung, B. Lee, “Real-time pickup and display integral imaging system without pseudoscopic problem,” Proc. SPIE 8643, 864303 (2013).
    [CrossRef]
  11. J. Kim, J.-H. Jung, C. Jang, B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21(16), 18742–18753 (2013).
    [CrossRef] [PubMed]
  12. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [CrossRef]
  13. J.-H. Park, K. Hong, B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  14. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [CrossRef] [PubMed]
  15. M. Kawakita, K. Iizuka, H. Nakamura, I. Mizuno, T. Kurita, T. Aida, Y. Yamanouchi, H. Mitsumine, T. Fukaya, H. Kikuchi, F. Sato, “High-definition real-time depth-mapping TV camera: HDTV axi-vision camera,” Opt. Express 12(12), 2781–2794 (2004).
    [CrossRef] [PubMed]
  16. E.-H. Kim, J. Hahn, H. Kim, B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009).
    [CrossRef] [PubMed]
  17. J.-H. Jung, K. Hong, G. Park, I. Chung, J.-H. Park, B. Lee, “Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging,” Opt. Express 18(25), 26373–26387 (2010).
    [CrossRef] [PubMed]
  18. J.-H. Jung, J. Yeom, J. Hong, K. Hong, S. W. Min, B. Lee, “Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display,” Opt. Express 19(21), 20468–20482 (2011).
    [CrossRef] [PubMed]
  19. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  20. P. Török and F. J. Kao, eds., Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer, 2003).
  21. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
    [CrossRef] [PubMed]
  22. M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [CrossRef]
  23. M. Levoy, Z. Zhang, I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [CrossRef] [PubMed]
  24. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [CrossRef] [PubMed]
  25. Y. T. Lim, J. H. Park, K. C. Kwon, N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
    [CrossRef] [PubMed]
  26. A. Orth, K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
    [CrossRef] [PubMed]
  27. J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40(29), 5217–5232 (2001).
    [CrossRef] [PubMed]
  28. Y.-T. Lim, J.-H. Park, K.-C. Kwon, N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
    [CrossRef] [PubMed]
  29. B. Lee, J. Kim, “Real-time 3D capturing-visualization conversion for light field microscopy,” Proc. SPIE 8769, 876908 (2013).
    [CrossRef]
  30. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
    [CrossRef] [PubMed]
  31. H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
    [CrossRef] [PubMed]
  32. J.-H. Park, H. Choi, Y. Kim, J. Kim, B. Lee, “Scaling of three-dimensional integral imaging,” Jpn. J. Appl. Phys. 44(1A), 216–224 (2005).
    [CrossRef]
  33. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  34. C. Jang, J. Kim, J. Yeom, and B. Lee, “Analysis of color separation reduction through the gap control method in integral imaging,” J. Inf. Disp. 15(2) (to be published).

2013 (7)

2012 (2)

2011 (3)

2010 (1)

2009 (4)

2006 (2)

2005 (2)

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

J.-H. Park, H. Choi, Y. Kim, J. Kim, B. Lee, “Scaling of three-dimensional integral imaging,” Jpn. J. Appl. Phys. 44(1A), 216–224 (2005).
[CrossRef]

2004 (2)

M. Kawakita, K. Iizuka, H. Nakamura, I. Mizuno, T. Kurita, T. Aida, Y. Yamanouchi, H. Mitsumine, T. Fukaya, H. Kikuchi, F. Sato, “High-definition real-time depth-mapping TV camera: HDTV axi-vision camera,” Opt. Express 12(12), 2781–2794 (2004).
[CrossRef] [PubMed]

W. J. Matusik, H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[CrossRef]

2001 (1)

1999 (1)

F. Okano, J. Arai, H. Hoshino, I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

1998 (2)

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

J. Arai, F. Okano, H. Hoshino, I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37(11), 2034–2045 (1998).
[CrossRef] [PubMed]

1997 (1)

1993 (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[CrossRef]

Aida, T.

Andalman, A.

Arai, J.

Betzig, E.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

Broxton, M.

Chen, N.

Chichester, R. J.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

Choi, H.

J.-H. Park, H. Choi, Y. Kim, J. Kim, B. Lee, “Scaling of three-dimensional integral imaging,” Jpn. J. Appl. Phys. 44(1A), 216–224 (2005).
[CrossRef]

Choi, H.-J.

Choi, M. K.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Chung, I.

Cohen, N.

Crozier, K.

Daneshpanah, M.

Deisseroth, K.

Driver, S. E.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Fire, A.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[CrossRef]

Fukaya, T.

Funatsu, R.

Grosenick, L.

Hahn, J.

Hiura, H.

Hong, J.

Hong, K.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[CrossRef]

Hoshino, H.

Hwang, H.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Iizuka, K.

Jang, C.

Javidi, B.

Jung, J.-H.

Jung, S.

Kawakita, M.

Kikuchi, H.

Kim, E.-H.

Kim, H.

Kim, H. S.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Kim, J.

B. Lee, J. Kim, “Real-time 3D capturing-visualization conversion for light field microscopy,” Proc. SPIE 8769, 876908 (2013).
[CrossRef]

J. Kim, J.-H. Jung, B. Lee, “Real-time pickup and display integral imaging system without pseudoscopic problem,” Proc. SPIE 8643, 864303 (2013).
[CrossRef]

J.-H. Jung, J. Kim, B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett. 38(1), 76–78 (2013).
[CrossRef] [PubMed]

J. Kim, J.-H. Jung, C. Jang, B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21(16), 18742–18753 (2013).
[CrossRef] [PubMed]

J.-H. Park, H. Choi, Y. Kim, J. Kim, B. Lee, “Scaling of three-dimensional integral imaging,” Jpn. J. Appl. Phys. 44(1A), 216–224 (2005).
[CrossRef]

Kim, N.

Kim, Y.

Kostas, S. A.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Kurita, T.

Kwon, K. C.

Kwon, K.-C.

Lee, B.

J.-H. Jung, J. Kim, B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett. 38(1), 76–78 (2013).
[CrossRef] [PubMed]

J. Kim, J.-H. Jung, C. Jang, B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21(16), 18742–18753 (2013).
[CrossRef] [PubMed]

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[CrossRef]

B. Lee, J. Kim, “Real-time 3D capturing-visualization conversion for light field microscopy,” Proc. SPIE 8769, 876908 (2013).
[CrossRef]

J. Kim, J.-H. Jung, B. Lee, “Real-time pickup and display integral imaging system without pseudoscopic problem,” Proc. SPIE 8643, 864303 (2013).
[CrossRef]

J.-H. Jung, J. Yeom, J. Hong, K. Hong, S. W. Min, B. Lee, “Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display,” Opt. Express 19(21), 20468–20482 (2011).
[CrossRef] [PubMed]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[CrossRef] [PubMed]

J.-H. Jung, K. Hong, G. Park, I. Chung, J.-H. Park, B. Lee, “Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging,” Opt. Express 18(25), 26373–26387 (2010).
[CrossRef] [PubMed]

J.-H. Park, K. Hong, B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

E.-H. Kim, J. Hahn, H. Kim, B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009).
[CrossRef] [PubMed]

J.-H. Park, H. Choi, Y. Kim, J. Kim, B. Lee, “Scaling of three-dimensional integral imaging,” Jpn. J. Appl. Phys. 44(1A), 216–224 (2005).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40(29), 5217–5232 (2001).
[CrossRef] [PubMed]

Lee, D.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Lee, H.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Lee, J.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Levoy, M.

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[CrossRef] [PubMed]

M. Levoy, Z. Zhang, I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[CrossRef]

Lim, Y. T.

Lim, Y.-T.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Martínez-Corral, M.

Martínez-Cuenca, R.

Matusik, W. J.

W. J. Matusik, H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[CrossRef]

McDowall, I.

M. Levoy, Z. Zhang, I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

Mello, C. C.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Min, S. W.

Min, S.-W.

Mitsumine, H.

Miura, M.

Mizuno, I.

Montgomery, M. K.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Moon, I.

Nakamura, H.

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[CrossRef]

Okaichi, N.

Okano, F.

Orth, A.

Paik, Y. K.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Park, G.

Park, J. H.

Park, J.-H.

Park, S.

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Pfister, H.

W. J. Matusik, H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[CrossRef]

Saavedra, G.

Sato, F.

Xu, S.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Yamanouchi, Y.

Yamashita, T.

Yang, S.

Yeom, J.

Yeom, S.

Yuyama, I.

Zhang, Z.

M. Levoy, Z. Zhang, I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

ACM Trans. Graph. (2)

W. J. Matusik, H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graph. 23(3), 814–824 (2004).
[CrossRef]

M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[CrossRef]

Appl. Opt. (5)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

J. Microsc. (1)

M. Levoy, Z. Zhang, I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

J.-H. Park, H. Choi, Y. Kim, J. Kim, B. Lee, “Scaling of three-dimensional integral imaging,” Jpn. J. Appl. Phys. 44(1A), 216–224 (2005).
[CrossRef]

Nat. Neurosci. (1)

H. Lee, M. K. Choi, D. Lee, H. S. Kim, H. Hwang, H. Kim, S. Park, Y. K. Paik, J. Lee, “Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons,” Nat. Neurosci. 15(1), 107–112 (2011).
[CrossRef] [PubMed]

Nature (1)

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans,” Nature 391(6669), 806–811 (1998).
[CrossRef] [PubMed]

Opt. Eng. (1)

F. Okano, J. Arai, H. Hoshino, I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38(6), 1072–1077 (1999).
[CrossRef]

Opt. Express (11)

M. Kawakita, K. Iizuka, H. Nakamura, I. Mizuno, T. Kurita, T. Aida, Y. Yamanouchi, H. Mitsumine, T. Fukaya, H. Kikuchi, F. Sato, “High-definition real-time depth-mapping TV camera: HDTV axi-vision camera,” Opt. Express 12(12), 2781–2794 (2004).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
[CrossRef] [PubMed]

B. Javidi, S. Yeom, I. Moon, M. Daneshpanah, “Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events,” Opt. Express 14(9), 3806–3829 (2006).
[CrossRef] [PubMed]

E.-H. Kim, J. Hahn, H. Kim, B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17(10), 7818–7830 (2009).
[CrossRef] [PubMed]

J. Kim, J.-H. Jung, C. Jang, B. Lee, “Real-time capturing and 3D visualization method based on integral imaging,” Opt. Express 21(16), 18742–18753 (2013).
[CrossRef] [PubMed]

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[CrossRef] [PubMed]

A. Orth, K. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express 20(12), 13522–13531 (2012).
[CrossRef] [PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, N. Kim, “Analysis on enhanced depth of field for integral imaging microscope,” Opt. Express 20(21), 23480–23488 (2012).
[CrossRef] [PubMed]

Y. T. Lim, J. H. Park, K. C. Kwon, N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[CrossRef] [PubMed]

J.-H. Jung, K. Hong, G. Park, I. Chung, J.-H. Park, B. Lee, “Reconstruction of three-dimensional occluded object using optical flow and triangular mesh reconstruction in integral imaging,” Opt. Express 18(25), 26373–26387 (2010).
[CrossRef] [PubMed]

J.-H. Jung, J. Yeom, J. Hong, K. Hong, S. W. Min, B. Lee, “Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display,” Opt. Express 19(21), 20468–20482 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[CrossRef]

Proc. SPIE (2)

J. Kim, J.-H. Jung, B. Lee, “Real-time pickup and display integral imaging system without pseudoscopic problem,” Proc. SPIE 8643, 864303 (2013).
[CrossRef]

B. Lee, J. Kim, “Real-time 3D capturing-visualization conversion for light field microscopy,” Proc. SPIE 8769, 876908 (2013).
[CrossRef]

Science (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

Other (4)

P. Török and F. J. Kao, eds., Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer, 2003).

G. Li, K.-C. Kwon, K.-H. Yoo, S.-G. Gil, and N. Kim, “Real-time display for real-existing three-dimensional objects with computer-generated integral imaging,” in Proceeding of International Meeting on Information Display (IMID), Daegu, Korea, Aug. 2012 (Society for Information Display and Korean Society for Information Display, 2012), pp. 471–472.

R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).

C. Jang, J. Kim, J. Yeom, and B. Lee, “Analysis of color separation reduction through the gap control method in integral imaging,” J. Inf. Disp. 15(2) (to be published).

Supplementary Material (3)

» Media 1: MOV (2475 KB)     
» Media 2: MOV (8392 KB)     
» Media 3: MOV (5768 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematic diagram of proposed method: (a) light field capturing with LFM and (b) 3D image reconstruction with integral imaging.

Fig. 2
Fig. 2

A part of captured light field of c.elegans by LFM with 40 × /0.65 NA objective, Fresnel Tech. 125 μm micro lens array (focal length 2.5 mm), Olympus BX53T optical microscope and AVT Prosilica GX2300C CCD: (red) 2 by 2 micro lens array region, (yellow) objective aperture stop, (sky blue) region that can be expressed with display lens array (1 mm lens array with 3.3 mm focal length).

Fig. 3
Fig. 3

Method for generating an elemental image from a captured light field with f-number matching: (a) a part of the captured light field with LFM, (b) rearranged image by cropping image regions that can be expressed with the display lens array, and (c) generated elemental image using the pixel mapping algorithm (k = 0).

Fig. 4
Fig. 4

Simulation of the generation of an elemental image with a captured light field from three micro objects (‘S’: 25 μm below the focal plane, ‘N’: at the focal plane, and ‘U’: 25 μm above the focal plane): (a) captured light field, (b) generated elemental image without cropping, (c) cropped image, and (d) generated elemental image with pixel mapping algorithm.

Fig. 5
Fig. 5

Implementation of proposed real-time integral imaging system for LFM.

Fig. 6
Fig. 6

Experimental results for the implemented LFM: (a) captured light field image of c.elegans, (b) perspective views extracted from captured light field image, and (c) synchronized perspective view video extracted from recorded light field image video (Media 1).

Fig. 7
Fig. 7

Experimental results for the proposed real-time integral imaging system for LFM: (a) perspective views of reconstructed 3D images with generated elemental image (Media 2) and (b) conceptual video of real-time 3D experiment (Media 3).

Tables (1)

Tables Icon

Table 1 Specification of Implemented Real-time Integral Imaging System for LFM

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M xy = M o × p d p c ,
M z = M o × p d p c × N A o N A d ,
N= f p = 1 2NA ,

Metrics