Abstract

We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
    [CrossRef] [PubMed]
  2. D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
    [CrossRef]
  3. T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
    [CrossRef]
  4. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
    [CrossRef]
  5. T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008).
    [CrossRef]
  6. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  7. S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013).
    [CrossRef] [PubMed]
  8. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
    [CrossRef] [PubMed]
  9. L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
    [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  11. Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
    [CrossRef]
  12. Y. Bian, Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
    [CrossRef] [PubMed]
  13. X. Guan, H. Wu, Y. Shi, L. Wosinski, D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013).
    [CrossRef] [PubMed]
  14. Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).
  16. D. M. Pozar, Microwave Engineering (Wiley, 2009).
  17. C. Tserkezis, N. Stefanou, “Calculation of waveguide modes in linear chains of metallic nanorods,” J. Opt. Soc. Am. B 29, 827–832 (2012).
    [CrossRef]
  18. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11, 3555–3561 (2003).
    [CrossRef] [PubMed]

2013

2012

C. Tserkezis, N. Stefanou, “Calculation of waveguide modes in linear chains of metallic nanorods,” J. Opt. Soc. Am. B 29, 827–832 (2012).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

2009

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

2008

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef] [PubMed]

2007

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

2006

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

2004

2003

Achiam, Y.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Adamczyk, O.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Bartal, G.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Bhandare, S.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Bian, Y.

Y. Bian, Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013).
[CrossRef] [PubMed]

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008).
[CrossRef]

Brongersma, M. L.

Catrysse, P. B.

Dai, D.

Dillon, T.

Drachev, V. P.

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008).
[CrossRef]

Fan, L.

S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013).
[CrossRef] [PubMed]

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

Fukuda, H.

Gao, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008).
[CrossRef]

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Gong, Q.

Grossard, N.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Guan, X.

Hauden, J.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

He, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[CrossRef]

Hoffmann, S.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Huang, X.

Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013).
[CrossRef]

Ibrahim, S. K.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Itabashi, S.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Kim, S.

S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013).
[CrossRef] [PubMed]

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

Lin, C.

Liu, J.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Liu, L.

D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Murakowski, J.

Noe, R.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Oulton, R. F.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).

Peveling, R.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Pfau, T.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Porrmann, M.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Porte, H.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Prather, D.

Pustai, D.

Qi, M.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013).
[CrossRef] [PubMed]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Sandel, D.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Selker, M. D.

Shi, Y.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Sorger, V. J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Stefanou, N.

Su, Y.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Sure, A.

Tan, Q.

Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013).
[CrossRef]

Tansarawiput, C.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

Tserkezis, C.

Tsuchizawa, T.

Varghese, L. T.

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013).
[CrossRef] [PubMed]

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

Webb, K. J.

Wosinski, L.

Wu, H.

Xu, D. X.

D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[CrossRef]

Xuan, Y.

S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013).
[CrossRef] [PubMed]

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

Yamada, K.

Yang, K.

Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013).
[CrossRef]

Yao, J.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

Zhang, X.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhao, X.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Zheng, Z.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Zhou, T.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Zhou, W.

Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013).
[CrossRef]

Zhu, J.

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

Zia, R.

IEEE Photon. Technol. Lett.

T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007).
[CrossRef]

Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Laser Photon. Rev.

D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013).
[CrossRef]

Nano Lett.

V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009).
[CrossRef] [PubMed]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Today

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008).
[CrossRef]

Small

L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013).
[CrossRef] [PubMed]

Other

Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).

D. M. Pozar, Microwave Engineering (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Design 1) (a) Top view (xy-plane) and (b) cross-sectional view (yz-plane) at each port of the simulated domain and its corresponding parameters: Ls=1.1 μm, θ =20°, and wi=hi=400 nm for i=1,2, and 3. The Cu nanorod dimensions are 50 × 50 × 400 nm, and the gap spacing between rods are fixed to 40 nm.

Fig. 2
Fig. 2

Power transmission T (expressed in dB) of Design 1 (Fig. 1) from port 1 to port 2 and port 3 as a function of Lc for TE0 (black) and TM0 (red) mode excitations. CFs and ILs are plotted with solid and dashed lines respectively.

Fig. 3
Fig. 3

Normalized field plots of Design 1 (Fig. 1) for (a) TE0 (Ey) and (b) TM0 (Ez) mode excitations when λ0=1550 nm. Insets show the corresponding mode excitations at port 1.

Fig. 4
Fig. 4

Power transmission T (expressed in dB) of Design 1 (Fig. 1) from port 1 to port 2 and port 3 as a function of λ0 for TE0 (black) and TM0 (red) mode. CFs and ILs are plotted with solid and dashed lines respectively.

Fig. 5
Fig. 5

(Design 2) (a) Top view (xy-plane) and (b) cross-sectional view (yz-plane) at each port of the simulated domain and its corresponding parameters: w2=250 nm, h2=540 nm, w3=540 nm, and h3=250 nm. Other parameters are same as Fig. 1.

Fig. 6
Fig. 6

Effective refractive index (neff) of the Design 2 (Fig. 5) for (a) TE0 and (b) TM0 mode as a function of λ0 at different ports: port 1 (black), port 2 (red), and port 3 (blue).

Fig. 7
Fig. 7

Normalized field plots of Design 2 (Fig. 5) for (a) TE0 (Ey) and (b) TM0 (Ez) mode excitations when λ0=1550 nm. Insets show the corresponding mode excitations at port 1.

Fig. 8
Fig. 8

Power transmission T (expressed in dB) of the Design 2 (Fig. 5) from port 1 to port 2 and port 3 as a function of λ0 for TE0 (black) and TM0 (red) mode. CFs and ILs are plotted with solid and dashed lines respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TE mode excitation CF TE = T port 3 , TE = 10 log 10 ( P 3 / P 1 ) IL TE = T port 2 , TE = 10 log 10 ( P 2 / P 1 ) ER TE = T port 3 , TE T Port 2 , TE = 10 log 10 ( P 3 / P 2 )
TM mode excitation CF TM = T port 2 , TM = 10 log 10 ( P 2 / P 1 ) IL TM = T port 3 , TM = 10 log 10 ( P 3 / P 1 ) ER TM = T port 2 , TM T port 3 , TM = 10 log 10 ( P 2 / P 3 )

Metrics