Abstract

We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered with the nanoparticles. It is predicted that the super absorption properties of HMM show up when exceedingly large amounts of high-k modes are excited by strong plasmonic resonances. In the case that the coupling interface is formed by non-resonance scatterers, there is almost the same enhancement in the absorption of stochastically perturbed HMM compared to that of metal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  3. Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  4. A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  6. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
    [CrossRef]
  7. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]
  8. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
    [CrossRef]
  9. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [CrossRef] [PubMed]
  10. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
    [CrossRef]
  11. G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [CrossRef] [PubMed]
  12. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. Irudayaraj, T. D. Sands, V. M. Shalaev, and B. A., “A Titanium Nitride based Metamaterial for Applications in the Visible,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2013), paper QTu3A.7.
  13. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
    [CrossRef]
  14. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
    [CrossRef] [PubMed]
  15. M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
    [CrossRef]
  16. D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [CrossRef] [PubMed]
  17. C. Simovski, S. Maslovski, I. Nefedov, S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
    [CrossRef] [PubMed]
  18. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  19. E. Narimanov, M. Noginov, H. Li, and A. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
    [CrossRef]
  20. T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
    [CrossRef]
  21. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
    [CrossRef] [PubMed]
  22. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).
  23. Z. F. Yu, A. Raman, S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  24. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [CrossRef]
  25. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  26. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
    [CrossRef]
  27. C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
    [CrossRef]
  28. C. Guclu, S. Campione, F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
    [CrossRef]

2014 (1)

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[CrossRef] [PubMed]

2013 (3)

2012 (4)

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

C. Guclu, S. Campione, F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[CrossRef]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

2011 (1)

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

2010 (2)

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Z. F. Yu, A. Raman, S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

2009 (1)

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

2008 (2)

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[CrossRef]

2007 (2)

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

2006 (5)

Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

2005 (1)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

1946 (1)

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Alekseyev, L. V.

Atkinson, R.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Barnakov, Y. A.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[CrossRef] [PubMed]

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

Bartal, G.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Black, P.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

Boltasseva, A.

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Bonner, C. E.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

Campione, S.

C. Guclu, S. Campione, F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[CrossRef]

Capolino, F.

C. Guclu, S. Campione, F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[CrossRef]

Chu, B.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dickson, W.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Duscher, G.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Engheta, N.

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Evans, P.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Fan, S. H.

Z. F. Yu, A. Raman, S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Franzen, S.

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[CrossRef]

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[CrossRef] [PubMed]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Gu, L.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

Guclu, C.

C. Guclu, S. Campione, F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[CrossRef]

Hendren, W. R.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Irudayaraj, J.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

Ishii, S.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[CrossRef] [PubMed]

Kildishev, A. V.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Kim, J. Y.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Kitur, J. K.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Lagutchev, A.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

Laughlin, B.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Lee, H.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Leonard, D. N.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Li, H.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[CrossRef] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

Liu, J.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

Liu, J. J.

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Liu, Y. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z. W.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Losego, M.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[CrossRef] [PubMed]

Maria, J. P.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Maslovski, S.

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Naik, G. V.

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Z. Jacob, L. V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

Narimanov, E. E.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[CrossRef] [PubMed]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Nefedov, I.

Noginov, M. A.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[CrossRef] [PubMed]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Pollard, R. J.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Raman, A.

Z. F. Yu, A. Raman, S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Rhodes, C.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Salandrino, A.

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Shalaginov, M. Y.

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

Simovski, C.

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Sun, C.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tretyakov, S.

Tumkur, T.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

Tumkur, T. U.

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[CrossRef] [PubMed]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

Wang, Y.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Weibel, S.

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

Wurtz, G. A.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Xiong, Y.

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yao, J.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yu, Z. F.

Z. F. Yu, A. Raman, S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Zayats, A. V.

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Zhang, X.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhu, G.

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

Appl. Phys. B (1)

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100(1), 215–218 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99(15), 151115 (2011).
[CrossRef]

M. Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A. V. Kildishev, V. M. Shalaev, “Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials,” Appl. Phys. Lett. 102(17), 173114 (2013).
[CrossRef]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[CrossRef]

T. U. Tumkur, J. K. Kitur, B. Chu, L. Gu, V. A. Podolskiy, E. E. Narimanov, M. A. Noginov, “Control of reflectance and transmittance in scattering and curvilinear hyperbolic metamaterials,” Appl. Phys. Lett. 101(9), 091105 (2012).
[CrossRef]

J. Appl. Phys. (1)

C. Rhodes, S. Franzen, J. P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[CrossRef]

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112(15), 6027–6032 (2008).
[CrossRef]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, Z. W. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (3)

C. Guclu, S. Campione, F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[CrossRef]

A. Salandrino, N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B 73(23), 235402 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

G. V. Naik, J. J. Liu, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[CrossRef] [PubMed]

Z. F. Yu, A. Raman, S. H. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Science (5)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012).
[CrossRef] [PubMed]

Z. W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (2)

E. Narimanov, M. Noginov, H. Li, and A. Barnakov, “Darker than Black: Radiation-absorbing Metamaterial,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper QPDA6.
[CrossRef]

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. Stach, J. Irudayaraj, T. D. Sands, V. M. Shalaev, and B. A., “A Titanium Nitride based Metamaterial for Applications in the Visible,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2013), paper QTu3A.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The real part (a) and imaginary part (b) of permittivity of the TiN/(Al,Sc)N HMM retrieved by spectroscopic ellipsometry. (c) The real and imaginary part of permittivity of the TiN film.

Fig. 2
Fig. 2

Schematic of multi-layered metal/dielectric HMM and SEM image of the HMM spin-coated with15 μL of diluted -ITO suspension.

Fig. 3
Fig. 3

Diffused reflectance (a) and absorption (b) of TiN/(Al,Sc)N HMM, TiN film and ITO coated HMM and ITO coated TiN film.

Fig. 4
Fig. 4

(a) The simulation setup. A single spherical ITO particle is placed on top of the film surface. (b) The real and imaginary part of permittivity of the ITO particle. A plane wave is normally incident on the sample polarized in the z direction. (c-h) display maps of the E z component of the scattering field in the k space ( k y , k z ) at the wavelength of 0.8 µm and 2 µm. (c-f) are drawn on the particle-film interface and (g, h) are drawn 20 nm below the interface.

Fig. 5
Fig. 5

Iso-frequency surfaces of HMM (a) and TiN (b). Re ( k ) is plotted against k | | at the wavelength of 0.8 µm and 2 µm obtained by Bloch theory. The dashed ellipse in (a) is the propagating suppression region (i.e. bandgap) in k space for HMM.

Fig. 6
Fig. 6

(a) Calculated absorption of scattered fields in TiN/(Al,Sc)N HMM and TiN film. The absorption is calculated by dividing the absorbed power by the incident power on the geometrical cross section of the particle. (b) Calculated absorption of the ITO nanoparticle on top of the HMM and TiN films. The inset shows the magnified figure for wavelengths from 0.55 μm to 1.3 μm. (c) Measured and calculated absorption spectra of the HMM and TiN films with dispersed ITO particles.

Metrics