Abstract

A method for controlled generation of composite aerosol particles is achieved by coating a core particle material, such as glass or polymer beads, with a second (analyte) material on the core surface. The mass fraction of the analyte can be varied over a wide range to generate resultant composite aerosol particles, which for the low end of analyte mass fractions has little influence on the particle size, but can be varied up to mass fractions nearly equivalent to the core material, as demonstrated in this paper. Analysis of this method was carried out using fluorescent analyte and core particle materials in separable spectral bands to measure both particle size distributions and fluorescent emission distributions on individual particle basis.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).
  2. L. C. Shriver-Lake, P. T. Charles, A. W. Kusterbeck, “Non-aerosol detection of explosives with a continuous flow immunosensor,” Anal. Bioanal. Chem. 377(3), 550–555 (2003).
    [CrossRef] [PubMed]
  3. D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8(1), 9–38 (2007).
    [CrossRef]
  4. G. E. Collins, B. C. Giordano, V. Sivaprakasam, R. Ananth, M. H. Hammond, C. D. Merritt, J. E. Tucker, M. P. Malito; J. D. Eversole, and S. L. Rose-Pehrsson, “Continuous flow, explosives vapor generator and sensor chamber,” Accepted by Rev. Sci. Instrum.
  5. R. M. Verkouteren, G. Gillen, D. W. Taylor, “Piezoelectric trace vapor calibrator,” Rev. Sci. Instrum. 77(8), 085104 (2006).
    [CrossRef]
  6. O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
    [CrossRef]
  7. Magsphere, Inc., Pasadena, CA, http://www.magsphere.com/ .
  8. Sigma Aldrich, St. Louis, MO, http://www.sigmaaldrich.com/ Part #A5378–10G .
  9. MicroFab Technologies Inc, Plano, TX, http://www.microfab.com/ .
  10. Sono-Tek Corporation, http://www.sono-tek.com/ .
  11. V. Sivaprakasam, T. Pletcher, J. E. Tucker, A. L. Huston, J. McGinn, D. Keller, J. D. Eversole, “Classification and selective collection of individual aerosol particles using laser-induced fluorescence,” Appl. Opt. 48(4), B126–B136 (2009).
    [CrossRef] [PubMed]
  12. T. S. I. Inc, Shoreview, MN, http://www.tsi.com .
  13. P. A. Baron, “Calibration and use of the aerodynamic particle sizer (APS 3300),” Aerosol Sci. Technol. 5(1), 55–67 (1986).
    [CrossRef]
  14. W. D. Griffiths, P. J. Iles, N. P. Vaughan, “An aerodynamic particle size analyser tested with spheres, compact particles and fibers having a common settling rate under gravity,” J. Aerosol Sci. 15(4), 491–502 (1986).
  15. I. A. Marshall, J. O. Mitchell, W. D. Griffiths, “The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer,” J. Aerosol Sci. 22, 173–89 (1991).
  16. Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).
  17. V. Sivaprakasam, H. B. Lin, A. L. Huston, J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express 19(7), 6191–6208 (2011).
    [CrossRef] [PubMed]

2011 (1)

2009 (1)

2007 (2)

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8(1), 9–38 (2007).
[CrossRef]

2006 (1)

R. M. Verkouteren, G. Gillen, D. W. Taylor, “Piezoelectric trace vapor calibrator,” Rev. Sci. Instrum. 77(8), 085104 (2006).
[CrossRef]

2005 (1)

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

2003 (1)

L. C. Shriver-Lake, P. T. Charles, A. W. Kusterbeck, “Non-aerosol detection of explosives with a continuous flow immunosensor,” Anal. Bioanal. Chem. 377(3), 550–555 (2003).
[CrossRef] [PubMed]

1993 (1)

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

1991 (1)

I. A. Marshall, J. O. Mitchell, W. D. Griffiths, “The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer,” J. Aerosol Sci. 22, 173–89 (1991).

1986 (2)

P. A. Baron, “Calibration and use of the aerodynamic particle sizer (APS 3300),” Aerosol Sci. Technol. 5(1), 55–67 (1986).
[CrossRef]

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “An aerodynamic particle size analyser tested with spheres, compact particles and fibers having a common settling rate under gravity,” J. Aerosol Sci. 15(4), 491–502 (1986).

Baron, P. A.

P. A. Baron, “Calibration and use of the aerodynamic particle sizer (APS 3300),” Aerosol Sci. Technol. 5(1), 55–67 (1986).
[CrossRef]

Charles, P. T.

L. C. Shriver-Lake, P. T. Charles, A. W. Kusterbeck, “Non-aerosol detection of explosives with a continuous flow immunosensor,” Anal. Bioanal. Chem. 377(3), 550–555 (2003).
[CrossRef] [PubMed]

Chen, B. T.

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

Cheng, Y. S.

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

De La Torre-Quintana, L. F.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Eversole, J. D.

Farquar, G. R.

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

Fergenson, D. P.

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

Frank, M.

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

Gard, E. E.

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

Gillen, G.

R. M. Verkouteren, G. Gillen, D. W. Taylor, “Piezoelectric trace vapor calibrator,” Rev. Sci. Instrum. 77(8), 085104 (2006).
[CrossRef]

Griffiths, W. D.

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

I. A. Marshall, J. O. Mitchell, W. D. Griffiths, “The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer,” J. Aerosol Sci. 22, 173–89 (1991).

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “An aerodynamic particle size analyser tested with spheres, compact particles and fibers having a common settling rate under gravity,” J. Aerosol Sci. 15(4), 491–502 (1986).

Hernandez-Rivera, S. P.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Huston, A. L.

Iles, P. J.

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “An aerodynamic particle size analyser tested with spheres, compact particles and fibers having a common settling rate under gravity,” J. Aerosol Sci. 15(4), 491–502 (1986).

Keller, D.

Kusterbeck, A. W.

L. C. Shriver-Lake, P. T. Charles, A. W. Kusterbeck, “Non-aerosol detection of explosives with a continuous flow immunosensor,” Anal. Bioanal. Chem. 377(3), 550–555 (2003).
[CrossRef] [PubMed]

Lin, H. B.

Marshall, I. A.

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

I. A. Marshall, J. O. Mitchell, W. D. Griffiths, “The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer,” J. Aerosol Sci. 22, 173–89 (1991).

Martin, A. N.

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

McGinn, J.

Mitchell, J. O.

I. A. Marshall, J. O. Mitchell, W. D. Griffiths, “The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer,” J. Aerosol Sci. 22, 173–89 (1991).

Mitchell, J. P.

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

Moore, D. S.

D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8(1), 9–38 (2007).
[CrossRef]

Pacheco-Londoño, L.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Pletcher, T.

Primera-Pedrozo, O. M.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Ramirez, M.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Ruiz, O.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Shriver-Lake, L. C.

L. C. Shriver-Lake, P. T. Charles, A. W. Kusterbeck, “Non-aerosol detection of explosives with a continuous flow immunosensor,” Anal. Bioanal. Chem. 377(3), 550–555 (2003).
[CrossRef] [PubMed]

Sivaprakasam, V.

Soto-Feliciano, Y. M.

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Taylor, D. W.

R. M. Verkouteren, G. Gillen, D. W. Taylor, “Piezoelectric trace vapor calibrator,” Rev. Sci. Instrum. 77(8), 085104 (2006).
[CrossRef]

Tucker, J. E.

Vaughan, N. P.

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “An aerodynamic particle size analyser tested with spheres, compact particles and fibers having a common settling rate under gravity,” J. Aerosol Sci. 15(4), 491–502 (1986).

Verkouteren, R. M.

R. M. Verkouteren, G. Gillen, D. W. Taylor, “Piezoelectric trace vapor calibrator,” Rev. Sci. Instrum. 77(8), 085104 (2006).
[CrossRef]

Yeha, H. C.

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

Aerosol Sci. Technol. (2)

P. A. Baron, “Calibration and use of the aerodynamic particle sizer (APS 3300),” Aerosol Sci. Technol. 5(1), 55–67 (1986).
[CrossRef]

Y. S. Cheng, B. T. Chen, H. C. Yeha, I. A. Marshall, J. P. Mitchell, W. D. Griffiths, “Behavior of compact nonspherical particles in the TSI aerodynamic particle sizer model APS33B: Ultra-Stokesian drag forces,” Aerosol Sci. Technol. 19(3), 255–267 (1993).

Anal. Bioanal. Chem. (1)

L. C. Shriver-Lake, P. T. Charles, A. W. Kusterbeck, “Non-aerosol detection of explosives with a continuous flow immunosensor,” Anal. Bioanal. Chem. 377(3), 550–555 (2003).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. N. Martin, G. R. Farquar, E. E. Gard, M. Frank, D. P. Fergenson, “Identification of high explosives using single-particle aerosol mass spectrometry,” Anal. Chem. 79(5), 1918–1925 (2007).

Appl. Opt. (1)

J. Aerosol Sci. (2)

W. D. Griffiths, P. J. Iles, N. P. Vaughan, “An aerodynamic particle size analyser tested with spheres, compact particles and fibers having a common settling rate under gravity,” J. Aerosol Sci. 15(4), 491–502 (1986).

I. A. Marshall, J. O. Mitchell, W. D. Griffiths, “The behaviour of regular-shaped non-spherical particles in a TSI aerodynamic particle sizer,” J. Aerosol Sci. 22, 173–89 (1991).

Opt. Express (1)

Proc. SPIE (1)

O. M. Primera-Pedrozo, L. Pacheco-Londoño, O. Ruiz, M. Ramirez, Y. M. Soto-Feliciano, L. F. De La Torre-Quintana, S. P. Hernandez-Rivera, “Characterization of thermal inkjet technology TNT Deposits by fiber optic-grazing angle probe FTIR Spectroscopy,” Proc. SPIE 5778, 543–552 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

R. M. Verkouteren, G. Gillen, D. W. Taylor, “Piezoelectric trace vapor calibrator,” Rev. Sci. Instrum. 77(8), 085104 (2006).
[CrossRef]

Sens. Imaging (1)

D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8(1), 9–38 (2007).
[CrossRef]

Other (6)

G. E. Collins, B. C. Giordano, V. Sivaprakasam, R. Ananth, M. H. Hammond, C. D. Merritt, J. E. Tucker, M. P. Malito; J. D. Eversole, and S. L. Rose-Pehrsson, “Continuous flow, explosives vapor generator and sensor chamber,” Accepted by Rev. Sci. Instrum.

Magsphere, Inc., Pasadena, CA, http://www.magsphere.com/ .

Sigma Aldrich, St. Louis, MO, http://www.sigmaaldrich.com/ Part #A5378–10G .

MicroFab Technologies Inc, Plano, TX, http://www.microfab.com/ .

Sono-Tek Corporation, http://www.sono-tek.com/ .

T. S. I. Inc, Shoreview, MN, http://www.tsi.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

266 nm laser excited fluorescence in spectral bands centered at 324 and 390 nm from ovalbumin particles generated by the MicroFab micro-droplet generator. Each point in the plot corresponds to the fluorescence emission from a single particle. Starting solution concentrations of ovalbumin are presented: 6, 36 and 170 µg/ml. The generated droplets from these solutions dried into aerosol particles with particle size modes of 1, 2.1 and 3.5 µm respectively, and the size distributions measured by the APS instrument are shown in inset.

Fig. 2
Fig. 2

266 nm laser excited fluorescence in spectral bands centered at 324 and 390 nm from the PMMA-P particle clusters. Each point in the plot corresponds to the fluorescence emission from a single particle. Starting solution concentrations correspond to averages of 2, 5, 10 and 20; 2.1 µm PMMA beads doped with 0.3% POPOP dye (PMMA-P) in a nominally 60 µm diameter droplet. Solid contour lines containing 50% of the particles for each sample is shown. The aerosol particle size distributions as measured by the APS instrument are shown in inset.

Fig. 3
Fig. 3

Power law fit of the 266 nm laser excited fluorescence emission from the ovalbumin particles (displayed in Fig. 1) and PMMA-P particles (displayed in Fig. 2) as a function of the median particle size obtained from the APS data shown in the inset of Figs. 1 and 2. For both samples, the 324 nm band emission is colored violet and the 390 nm band emission is colored light blue. In all cases fluorescence response dependence on particle size is approximately volumetric (I ∝ d3). The approximate per particle fluorescence cross-section is also labelled on the right-axis.

Fig. 4
Fig. 4

Size distributions of the four concentrations of PMMA-P beads (nominally 2, 5, 10 and 20 2.1 μm PMMA-P beads in a 60 µm diameter droplet) as measured by the APS instrument are plotted in solid lines. The corresponding computed Poisson probability distribution curves are plotted in dashed lines. All the traces are normalized to unity for visual comparison.

Fig. 5
Fig. 5

One-dimensional histograms of the fluorescence emission in spectral bands centered at 324 nm (A) and 390 nm (B) of PMMA-P clusters from Fig. 2 are plotted in solid lines. The computationally modeled fluorescence responses; based on particle size and fluorescence yield are plotted as dashed lines in (A) and (B). Modelling the AIM’ device’s responses using a lognormal distribution function with adjustable standard deviations are plotted as dotted lines in (A) and (B). All the traces are normalized to 1 for visual comparison.

Fig. 6
Fig. 6

(A). 266 nm laser excited fluorescence in spectral bands centered at 324 and 390 nm from 2.1 µm PMMA-P beads suspended in solutions of ovalbumin using the MicroFab micro-droplet generator are plotted in primary colors. The PMMA-P solution corresponds to an average concentration of 10 PMMA-P beads per 60 µm drop (C-10) and ovalbumin solution concentrations used were 0, 6, 36 and 170 µg/ml and are labeled a, b, c and d respectively. Particle size distributions are shown in inset. For comparison, the fluorescence of same concentrations of ovalbumin only are plotted in lighter shades of the corresponding colors and labeled e, f and g. SEM images of typical cluster particles are shown on the top. Figure 6(B) shows the one-dimensional histogram of the particle fluorescence in the 324 nm emission band, with the composite particles’ response plotted in solid lines, ovalbumin in dashed lines and the convolution of the fluorescence response of PMMA-P (a) and ovalbumin (e, f and g) in dotted lines while Fig. 6(C) shows the histogram of the particle fluorescence in the 390 nm emission band, with the composite particles’ response plotted in solid lines, ovalbumin in dashed lines and the convolution of the fluorescence response of PMMA-P (a) and ovalbumin (e, f and g) in dotted lines.

Fig. 7
Fig. 7

266 nm laser excited fluorescence in spectral bands centered at 324 and 390 nm from 2.1 µm PMMA-P beads suspended in solutions of ovalbumin using the Sono-tek ultrasonic generator. The PMMA-P solution corresponds to an average concentration of 10 PMMA-P beads per 60 µm drop (C-10) and ovalbumin solution concentrations used were 0, 20, 126 and 360 µg/ml.

Tables (3)

Tables Icon

Table 1 Comparison between the computed and measured diameter of ovalbumin and PMMA-P particles generated with micro-droplet generator.

Tables Icon

Table 2 Comparison between the computed and measured diameter of composite particles generated with micro-droplet generator.

Tables Icon

Table 3 Comparison between the computed and measured diameter of various types and sizes of particles generated with Sono-tek generator.

Metrics