Abstract

A new robust MPEG-based novel look-up table (MPEG-NLUT) is proposed for accelerated computation of video holograms of fast-moving three-dimensional (3-D) objects in space. Here, the input 3-D video frames are sequentially grouped into sets of four, in which the first and remaining three frames in each set become the reference (RF) and general frames (GFs). Then, the frame images are divided into blocks, from which motion vectors are estimated between the RF and each of the GFs, and with these estimated motion vectors, object motions in all blocks are compensated. Subsequently, only the difference images between the motion-compensated RF and each of the GFs are applied to the NLUT for CGH calculation based on its unique property of shift-invariance. Experiments with three types of test 3-D video scenarios confirm that the average number of calculated object points and the average calculation time of the proposed method, have found to be reduced down to 27.34%, 55.46%, 45.70% and 19.88%, 44.98%, 30.72%, respectively compared to those of the conventional NLUT, temporal redundancy-based NLUT (TR-NLUT) and motion compensation-based NLUT (MC-NLUT) methods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley, 2002).
  2. T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2007).
  3. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [CrossRef]
  4. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
    [CrossRef] [PubMed]
  5. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [CrossRef] [PubMed]
  6. K. Hosoyachi, K. Yamaguchi, T. Ichikawa, Y. Sakamoto, “Precalculation method using spherical basic object light for computer-generated hologram,” Appl. Opt. 52(1), A33–A44 (2013).
    [CrossRef] [PubMed]
  7. S.-C. Kim, E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
    [CrossRef] [PubMed]
  8. S. C. Kim, J. M. Kim, E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [CrossRef] [PubMed]
  9. S.-C. Kim, J.-H. Kim, E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
    [CrossRef] [PubMed]
  10. S.-C. Kim, J.-H. Yoon, E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986–5995 (2009).
    [CrossRef] [PubMed]
  11. S.-C. Kim, W.-Y. Choe, E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
    [CrossRef]
  12. S.-C. Kim, K.-D. Na, E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
    [CrossRef]
  13. D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
    [CrossRef]
  14. Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14(9), 095702 (2012).
    [CrossRef]
  15. S.-C. Kim, X.-B. Dong, M.-W. Kwon, E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
    [CrossRef] [PubMed]
  16. M.-W. Kwon, S.-C. Kim, E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
    [CrossRef]
  17. D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
    [CrossRef]
  18. Q. Zhang, K. N. Ngan, “Segmentation and tracking multiple objects under occlusion from multiview video,” IEEE Trans. Image Process. 20(11), 3308–3313 (2011).
    [CrossRef] [PubMed]
  19. D. Le Gall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM 34(4), 46–58 (1991).
    [CrossRef]
  20. A. Barjatya, “Block matching algorithms for motion estimation,” in Technical Report, Utah State University (2004).

2014 (1)

M.-W. Kwon, S.-C. Kim, E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[CrossRef]

2013 (4)

2012 (3)

2011 (5)

S.-C. Kim, J.-H. Kim, E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
[CrossRef] [PubMed]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

S.-C. Kim, W.-Y. Choe, E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

Q. Zhang, K. N. Ngan, “Segmentation and tracking multiple objects under occlusion from multiview video,” IEEE Trans. Image Process. 20(11), 3308–3313 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

1991 (1)

D. Le Gall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM 34(4), 46–58 (1991).
[CrossRef]

Choe, W.-Y.

S.-C. Kim, W.-Y. Choe, E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

Dong, X.-B.

Fan, Q.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14(9), 095702 (2012).
[CrossRef]

Hosoyachi, K.

Ichikawa, T.

Ito, T.

Jia, J.

Jiang, W.

Kim, E.-S.

M.-W. Kwon, S.-C. Kim, E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[CrossRef]

S.-C. Kim, K.-D. Na, E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[CrossRef] [PubMed]

S. C. Kim, J. M. Kim, E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[CrossRef] [PubMed]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

S.-C. Kim, W.-Y. Choe, E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

S.-C. Kim, J.-H. Kim, E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
[CrossRef] [PubMed]

S.-C. Kim, J.-H. Yoon, E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986–5995 (2009).
[CrossRef] [PubMed]

S.-C. Kim, E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[CrossRef] [PubMed]

Kim, J. M.

Kim, J.-H.

Kim, S. C.

Kim, S.-C.

M.-W. Kwon, S.-C. Kim, E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[CrossRef]

S.-C. Kim, K.-D. Na, E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[CrossRef] [PubMed]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

S.-C. Kim, J.-H. Kim, E.-S. Kim, “Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram,” Appl. Opt. 50(19), 3375–3382 (2011).
[CrossRef] [PubMed]

S.-C. Kim, W.-Y. Choe, E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

S.-C. Kim, J.-H. Yoon, E.-S. Kim, “Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques,” Appl. Opt. 47, 5986–5995 (2009).
[CrossRef] [PubMed]

S.-C. Kim, E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).
[CrossRef] [PubMed]

Kwon, D.-W.

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

Kwon, M.-W.

M.-W. Kwon, S.-C. Kim, E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[CrossRef]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013).
[CrossRef] [PubMed]

Le Gall, D.

D. Le Gall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM 34(4), 46–58 (1991).
[CrossRef]

Li, X.

Liu, J.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Masuda, N.

Na, K.-D.

S.-C. Kim, K.-D. Na, E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

Nakayama, H.

Ngan, K. N.

Q. Zhang, K. N. Ngan, “Segmentation and tracking multiple objects under occlusion from multiview video,” IEEE Trans. Image Process. 20(11), 3308–3313 (2011).
[CrossRef] [PubMed]

Oikawa, M.

Okada, N.

Pan, Y.

Sakamoto, Y.

Shimobaba, T.

Sun, Z.

Wang, Y.

Weng, J.

Yamaguchi, K.

Yang, Z.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14(9), 095702 (2012).
[CrossRef]

Yoon, J.-H.

Zhang, B.

Zhang, Q.

Q. Zhang, K. N. Ngan, “Segmentation and tracking multiple objects under occlusion from multiview video,” IEEE Trans. Image Process. 20(11), 3308–3313 (2011).
[CrossRef] [PubMed]

Zhang, Y.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14(9), 095702 (2012).
[CrossRef]

Zhao, Q.

Zhou, J.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14(9), 095702 (2012).
[CrossRef]

Appl. Opt. (5)

Commun. ACM (1)

D. Le Gall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM 34(4), 46–58 (1991).
[CrossRef]

IEEE Trans. Image Process. (1)

Q. Zhang, K. N. Ngan, “Segmentation and tracking multiple objects under occlusion from multiview video,” IEEE Trans. Image Process. 20(11), 3308–3313 (2011).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

J. Opt. (1)

Z. Yang, Q. Fan, Y. Zhang, J. Liu, J. Zhou, “A new method for producing computer generated holograms,” J. Opt. 14(9), 095702 (2012).
[CrossRef]

Opt. Eng. (2)

M.-W. Kwon, S.-C. Kim, E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[CrossRef]

S.-C. Kim, W.-Y. Choe, E.-S. Kim, “Accelerated computation of hologram patterns by use of interline redundancy of 3-D object images,” Opt. Eng. 50(9), 091305 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

S.-C. Kim, K.-D. Na, E.-S. Kim, “Accelerated computation of computer-generated holograms of a 3-D object with N×N-point principle fringe patterns in the novel look-up table method,” Opt. Lasers Eng. 51(3), 185–196 (2013).
[CrossRef]

Proc. SPIE (2)

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Memory size reduction of the novel look-up-table method using symmetry of Fresnel zone plate,” Proc. SPIE 7957, 79571B (2011).
[CrossRef]

D.-W. Kwon, S.-C. Kim, E.-S. Kim, “Hardware implementation of N-LUT method using Field Programmable Gate Array technology,” Proc. SPIE 7957, 79571C (2011).
[CrossRef]

Other (3)

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley, 2002).

T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2007).

A. Barjatya, “Block matching algorithms for motion estimation,” in Technical Report, Utah State University (2004).

Supplementary Material (15)

» Media 1: AVI (5678 KB)     
» Media 2: AVI (6060 KB)     
» Media 3: AVI (6035 KB)     
» Media 4: AVI (4979 KB)     
» Media 5: AVI (5174 KB)     
» Media 6: AVI (5158 KB)     
» Media 7: AVI (5682 KB)     
» Media 8: AVI (6066 KB)     
» Media 9: AVI (6041 KB)     
» Media 10: AVI (2765 KB)     
» Media 11: AVI (2941 KB)     
» Media 12: AVI (2926 KB)     
» Media 13: AVI (11136 KB)     
» Media 14: AVI (14097 KB)     
» Media 15: AVI (14296 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Geometry for generating the Fresnel hologram pattern of a 3-D object.

Fig. 2
Fig. 2

Schematic for showing the shift-invariance property of the NLUT.

Fig. 3
Fig. 3

(a) Reference image, (b) Input image, (c) Object-based motion vector, (d) Block-based motion vectors (e) Object points of the input image, (f)-(h) Object points of the difference images extracted between the reference and input images without a motion vector, with the object-based motion vector and the block-based motion vectors, respectively.

Fig. 4
Fig. 4

Operational flowchart of the proposed MPEG-NLUT.

Fig. 5
Fig. 5

A structure of the input 3-D video frames grouped into a sequence of GOPs.

Fig. 6
Fig. 6

A reference frame divided into M × N blocks and the calculated B-CGHs for each block with the TR-NLUT.

Fig. 7
Fig. 7

Intensity and depth images of the 1st frame for each test 3-D video of (a) Case I (Media 1), (b) Case II (Media 2) and (c) Case III (Media 3).

Fig. 8
Fig. 8

Block-based motion estimation between the RF and one of the GFs.

Fig. 9
Fig. 9

An example of the block-based motion estimation: (a) An optical-flow map showing the MVs of 9 blocks of the RF, which are represented by the arrows, (b) A motion-vector map showing the corresponding motion-vector values given by the number of displaced pixels along the x and y directions.

Fig. 10
Fig. 10

Motion vectors of the (a) 1st frame of the ‘Case I’, (b) 2nd frame of the ‘Case I’ (Media 4), (c) 71st frame of the ‘Case I’, (d) 1st frame of the ‘Case II’, (e) 2nd frame of the ‘Case II’ (Media 5), (f) 71st frame of the ‘Case II’, (g) 1st frame of the ‘Case III’, (h) 2nd frame of the ‘Case III’ (Media 6), (i) 71st frame of the ‘Case III’.

Fig. 11
Fig. 11

An example of the block-based motion compensation: (a) Motion compensation with the estimated motion vectors, (b) Motion-compensated version of the RF.

Fig. 12
Fig. 12

Motion-compensated object images of the 2nd, 32nd and 71st frames for each test video of (a) Case I (Media 7), (b) Case II (Media 8), and (c) Case III (Media 9).

Fig. 13
Fig. 13

Difference images of the 2nd, 32nd and 71st frames for each test video of (a) Case I (Media 10), (b) Case II (Media 11), and (c) Case III (Media 12).

Fig. 14
Fig. 14

Flowchart of the CGH generation process for each of the GFs.

Fig. 15
Fig. 15

A shifting process of the B-CGHs of the RF in Fig. 9: (a), (d) and (g) represent the B-CGHs for each block of A, B and I, (b), (e) and (h) show their shifted versions with the corresponding MVs, (c), (f) and (i) show their shifted versions compensated with the hologram patterns for the blank areas, and (j) CGH for the MC-RF obtained by adding all shifted B-CGHs.

Fig. 16
Fig. 16

Reconstructed 3-D ‘Car’ object images at the distances of 630mm and 700mm for each test video of (a) ‘Case I’ (Media 13), (b) ‘Case II’ (Media 14) and (c) ‘Case III’ (Media 15).

Fig. 17
Fig. 17

Comparison results: (a)-(c) Numbers of calculated object points, (d)-(f) Calculation times for one-object point in the conventional NLUT, TR-NLUT, MC-NLUT and proposed methods for each test video of ‘Case I’, ‘Case II’ and ‘Case III’.

Tables (1)

Tables Icon

Table 1 Average numbers of calculated object points and average calculation times for one-object point in the conventional NLUT, TR-NLUT, MC-NLUT and proposed methods for each test video of ‘Case I’, ‘Case II’ and ‘Case III’

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ; z p ) 1 r p cos [ k r p + k x sin θ R + φ p ]
r p = ( x x p ) 2 + ( y y p ) 2 + z p 2
I ( x , y ) = p = 1 N a p T ( x x p , y y p ; z p )
I R = m = 1 M n = 1 N I B ( m , n )
B m , n ( x 2 , y 2 , t + Δ t ) = A m , n ( x 1 + d x , y 1 + d y , t )
M A D = 1 S L 2 i = 0 S L 1 j = 0 S L 1 | C i j R i j |
( d x , d y ) = ( x 2 x 1 , y 2 y 1 )
A ' ( x , y ) = A ( x + 3 , y )
I S ( x , y ) = m = 1 M [ I R m ( x d x , y d y ) + I R B m ( x , y ) ]
I C ( x , y ) = I S ( x , y ) I R O ( x , y )
I ( x , y ) = I C ( x , y ) + I D ( x , y )

Metrics