Abstract

Retrieving the information about the object hidden around a corner or obscured by a diffused surface has a vast range of applications. Over the time many techniques have been tried to make this goal realizable. Here, we are presenting yet another approach to retrieve a 3-D object from the scattered field using digital holography with statistical averaging. The methods are simple, easy to implement and allow fast image reconstruction because they do not require phase correction, complicated image processing, scanning of the object or any kind of wave shaping. The methods inherit the merit of digital holography that the micro deformation and displacement of the hidden object can also be detected.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Baltes, Inverse Scattering Problems in Optics (Springer, 1980).
  2. J. C. Dainty, D. Newman, “Detection of gratings hidden by diffusers using photon-correlation techniques,” Opt. Lett. 8(12), 608–610 (1983).
    [CrossRef] [PubMed]
  3. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
  4. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [CrossRef] [PubMed]
  5. A. P. Mosk, “Imaging and focusing through turbid media,” in Proceedings of Novel Techniques in Microscopy (Hawaii, 2013).
  6. A. P. Mosk, “High resolution imaging using scattered light,” in Proceedings of Digital Holography and Three-Dimensional Imaging (Hawaii, 2013).
  7. I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  8. O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
    [CrossRef]
  9. J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
    [CrossRef]
  10. H. Kogelnik, K. S. Pennington, “Holographic imaging through a random medium,” J. Opt. Soc. Am. 58(2), 273–274 (1968).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  12. J. W. Goodman, Speckle Phenomena in Optics Theory and Application (Robert and Company, 2007).
  13. J. W. Goodman, Statistical Optics (John Wiley, 1985).

2012 (3)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

2007 (1)

1983 (1)

1968 (1)

1966 (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Bawendi, M.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Dainty, J. C.

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Katz, O.

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

Kogelnik, H.

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Newman, D.

Pennington, K. S.

Raskar, R.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Silberberg, Y.

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

Small, E.

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Vellekoop, I. M.

Velten, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Appl. Phys. Lett. (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8(12), 311–313 (1966).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Commun. (1)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

Nat. Photonics (1)

O. Katz, E. Small, Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6(8), 549–553 (2012).
[CrossRef]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (6)

A. P. Mosk, “Imaging and focusing through turbid media,” in Proceedings of Novel Techniques in Microscopy (Hawaii, 2013).

A. P. Mosk, “High resolution imaging using scattered light,” in Proceedings of Digital Holography and Three-Dimensional Imaging (Hawaii, 2013).

H. P. Baltes, Inverse Scattering Problems in Optics (Springer, 1980).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

J. W. Goodman, Speckle Phenomena in Optics Theory and Application (Robert and Company, 2007).

J. W. Goodman, Statistical Optics (John Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission mode; (a) schematic diagram and (b) ray diagram of the experimental setup.

Fig. 2
Fig. 2

Transmission mode; object size: 5.5 cm, number of Pixels used: 1500 x 1500. (a) Part of recorded hologram. (b) Reconstruction without averaging the speckle field. (c) Reconstructed image while the diffuser is rotating

Fig. 3
Fig. 3

Reflection mode; object size: 2.7 cm, number of pixels used: 1500 X 1500. (a) Schematic diagram of the experimental setup. (b) Reconstructed image with the static diffuser. (c) Reconstructed image with temporal averaging of the speckle field.

Fig. 4
Fig. 4

(a) Reconstructed object. (b) Retrieved phase information about the deformation.

Fig. 5
Fig. 5

(a) Object to be imaged: size 6 mm. (b) Dual reference holography method to image the object behind the diffuser. (c) Reconstructed image.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u ( ξ , η ) = u O ( ξ , η ) + u R ( ξ , η ) .
u d i f f ( ξ , η ) = u ( ξ , η ) exp [ i ϕ r ( ξ , η ) ] .
u CCD ( x,y )= { u( ξ, η )exp[ i ϕ r ( ξ,η ) ] }g( xξ,yη )dξdη .
| u CCD ( x,y ) | 2 = u( ξ 1 , η 1 ) u * ( ξ 2 , η 2 )exp[ i ϕ r ( ξ 1 , η 1 ) ]exp[ i ϕ r ( ξ 2 , η 2 ) ] ×g( x ξ 1 ,y η 1 ) g * ( x ξ 2 ,y η 2 )d ξ 1 d η 1 d ξ 2 d η 2 .
exp[ i ϕ r ( ξ 1 , η 1 ,t ) ]exp[ i ϕ r ( ξ 2 , η 2 ,t ) ] =δ( ξ 1 ξ 2 ,   η 1 η 2 ).
| u CCD (x,y) | 2 = | u(ξ,η) | 2 ×| g(xξ,yη) | 2 dξdη.
| u(ξ,η) | 2 = | u O (ξ,η) | 2 + | u R (ξ,η) | 2 + u O (ξ,η) u R * (ξ,η)+ u O * (ξ,η) u R (ξ,η),
[ | u CCD ( x,y ) | 2 ]=[ | u( x,y ) | 2 ]×[ | g( x,y ) | 2 ].

Metrics