Abstract

Surface passivation by Al2O3 deposited by atomic layer deposition (ALD) at 200 °C is examined to suppress surface recombination for carrier-injection SiGe optical modulators. We have investigated the interface trap densities at SiO2/Si and Al2O3/Si interfaces formed by plasma enhanced chemical vapor deposition (PECVD) and ALD, respectively. By evaluating metal-oxide-semiconductor (MOS) capacitors formed on Si surfaces after dry etching, we found that the interface trap density of Al2O3 passivated surface is more than one order of magnitude less than that of SiO2 passivated one. As a result, the modulation efficiency is improved by 1.3 by inserting Al2O3 layer prior to SiO2 deposition by PECVD owing to superior interface between Al2O3 and Si. The Al2O3 passivated device exhibits comparable modulation efficiency to a thermally-grown SiO2 passivated one formed by dry oxidation. Hence, the ALD Al2O3 passivation is effective to passivate SiGe optical modulators for which low temperature processes are required.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [CrossRef]
  2. R. A. Soref, B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  4. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  5. W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  6. S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, T. Horikawa, T. Usuki, “12.5-Gb/s operation with 0.29-V·cm V(π)L using silicon Mach-Zehnder modulator based-on forward-biased pin diode,” Opt. Express 20(3), 2911–2923 (2012).
    [CrossRef] [PubMed]
  7. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).
  8. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  9. F. Y. Gardes, D. J. Thomson, N. G. Emerson, G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
    [CrossRef] [PubMed]
  10. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20(11), 12014–12020 (2012).
    [CrossRef] [PubMed]
  11. J. Ding, R. Ji, L. Zhang, L. Yang, “Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator,” J. Lightwave Technol. 31(14), 2434–2440 (2013).
    [CrossRef]
  12. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [CrossRef] [PubMed]
  13. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [CrossRef] [PubMed]
  14. L. Yang, J. F. Ding, “High-Speed Silicon Mach-Zehnder Optical Modulator With Large Optical Bandwidth,” J. Lightwave Technol. 32(5), 966–970 (2014).
    [CrossRef]
  15. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  16. M. Takenaka, S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE J. Quantum Electron. 48(1), 8–16 (2012).
    [CrossRef]
  17. J. Han, R. Zhang, T. Osada, M. Hata, M. Takenaka, and S. Takagi, “Improvement of SiGe MOS interfaces by plasma post-nitridation for SiGe high-k MOS optical modulators, “. 2012 IEEE International Conference on Group IV Photonics.
  18. Y. Kim, M. Yokoyama, N. Taoka, M. Takenaka, S. Takagi, “Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth,” Opt. Express 21(17), 19615–19623 (2013).
    [CrossRef] [PubMed]
  19. Y. Kim, M. Takenaka, and S. Takagi, “Numerical analysis of strained SiGe-based carrier-injection optical modulators,” 2012 IEEE International Conference on Group IV Photonics.
    [CrossRef]
  20. Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” eprint http:// arXiv:1304.1229 .
  21. G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16(8), 5218–5226 (2008).
    [CrossRef] [PubMed]
  22. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
    [CrossRef] [PubMed]
  23. R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
    [CrossRef]
  24. Eh. Nicollia, A. Goetzber, “Si-SiO2 Interface - Electrical Properties as Determined by Metal-Insulator-Silicon Conductance Technique,” AT&T Tech. J. 46, 1055 -& (1967).

2014 (1)

2013 (4)

2012 (3)

2011 (2)

2010 (2)

2009 (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

2008 (1)

2007 (2)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (1)

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

1988 (1)

R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
[CrossRef]

1987 (1)

R. A. Soref, B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1967 (1)

Eh. Nicollia, A. Goetzber, “Si-SiO2 Interface - Electrical Properties as Determined by Metal-Insulator-Silicon Conductance Technique,” AT&T Tech. J. 46, 1055 -& (1967).

Akagawa, T.

Akiyama, S.

Ayazi, A.

Baba, T.

Baehr-Jones, T.

Basak, J.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

Bean, J. C.

R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
[CrossRef]

Bennett, B. R.

R. A. Soref, B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Chee, E. K.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

Cohen, O.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

Ding, J.

Ding, J. F.

Ding, R.

Emerson, N. G.

Fedeli, J. M.

Fournier, M.

Gan, F.

Gardes, F. Y.

Geis, M. W.

Goetzber, A.

Eh. Nicollia, A. Goetzber, “Si-SiO2 Interface - Electrical Properties as Determined by Metal-Insulator-Silicon Conductance Technique,” AT&T Tech. J. 46, 1055 -& (1967).

Green, W. M. J.

Grein, M. E.

Grosse, P.

Harris, N. C.

Hirayama, N.

Hochberg, M.

Horikawa, T.

Hu, Y.

Hull, R.

R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
[CrossRef]

Imai, M.

Ippen, E. P.

Itabashi, S.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

Ji, R.

Jones, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Käertner, F. X.

Kim, Y.

Kou, R.

Lee, P.

Leibenguth, R. E.

R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
[CrossRef]

Lennon, D. M.

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lim, A. E.

Lim, A. E.-J.

Liow, T.-Y.

Lipson, M.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

Liu, A. S.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, Y.

Lo, G.-Q.

Lo, P. G.

Lyszczarz, T. M.

Ma, Y.

Manipatruni, S.

Mashanovich, G.

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

Nicolaescu, R.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Nicollia, Eh.

Eh. Nicollia, A. Goetzber, “Si-SiO2 Interface - Electrical Properties as Determined by Metal-Insulator-Silicon Conductance Technique,” AT&T Tech. J. 46, 1055 -& (1967).

Nishi, H.

Noguchi, Y.

Novack, A.

Okayama, H.

Orcutt, J. S.

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Park, S.

Pinguet, T.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Reed, G. T.

Rooks, M. J.

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Schulein, R. T.

Sekaric, L.

Shakya, J.

Shinojima, H.

Soref, R. A.

R. A. Soref, B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Spector, S. J.

Streshinsky, M.

Takagi, S.

Takahashi, H.

Takahashi, M.

Takenaka, M.

Taoka, N.

Teo, S. H.-G.

Thomson, D. J.

Tsuchizawa, T.

Tu, X.

Usuki, T.

Vlasov, Y. A.

Watanabe, T.

Werder, D. J.

R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
[CrossRef]

Xu, Q.

Xuan, Z.

Yamada, K.

Yang, L.

Yang, Y.

Yokoyama, M.

Yoon, J. U.

Zhang, L.

Zhang, Y.

Zhou, G. R.

Appl. Phys. Lett. (1)

R. Hull, J. C. Bean, D. J. Werder, R. E. Leibenguth, “In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures,” Appl. Phys. Lett. 52(19), 1605 (1988).
[CrossRef]

AT&T Tech. J. (1)

Eh. Nicollia, A. Goetzber, “Si-SiO2 Interface - Electrical Properties as Determined by Metal-Insulator-Silicon Conductance Technique,” AT&T Tech. J. 46, 1055 -& (1967).

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 51–52 (2009).

IEEE J Quantum Electron. (1)

R. A. Soref, B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Takenaka, S. Takagi, “Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators,” IEEE J. Quantum Electron. 48(1), 8–16 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[CrossRef]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (11)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

G. R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express 16(8), 5218–5226 (2008).
[CrossRef] [PubMed]

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, S. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express 19(12), 11804–11814 (2011).
[CrossRef] [PubMed]

S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, T. Horikawa, T. Usuki, “12.5-Gb/s operation with 0.29-V·cm V(π)L using silicon Mach-Zehnder modulator based-on forward-biased pin diode,” Opt. Express 20(3), 2911–2923 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
[CrossRef] [PubMed]

Y. Kim, M. Yokoyama, N. Taoka, M. Takenaka, S. Takagi, “Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth,” Opt. Express 21(17), 19615–19623 (2013).
[CrossRef] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[CrossRef] [PubMed]

Other (3)

J. Han, R. Zhang, T. Osada, M. Hata, M. Takenaka, and S. Takagi, “Improvement of SiGe MOS interfaces by plasma post-nitridation for SiGe high-k MOS optical modulators, “. 2012 IEEE International Conference on Group IV Photonics.

Y. Kim, M. Takenaka, and S. Takagi, “Numerical analysis of strained SiGe-based carrier-injection optical modulators,” 2012 IEEE International Conference on Group IV Photonics.
[CrossRef]

Y. Kim, M. Takenaka, T. Osada, M. Hata, and S. Takagi, “Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators,” eprint http:// arXiv:1304.1229 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic device structure of carrier injection type strained SiGe optical modulator.

Fig. 2
Fig. 2

Process flow of Al/Al2O3/etched Si MOS capacitor. (a) Dry etching, (b) Deposition of 5-nm-thick Al2O3 (c) Gate formation by Al electrode.

Fig. 3
Fig. 3

C-V characteristics of (a) Al2O3/Si, (b) Al2O3/etched Si, (c) SiO2/Si, and (d) SiO2/etched Si MOS capacitors.

Fig. 4
Fig. 4

Interface trap density distributions of the SiO2/etched Si, the Al2O3/etched Si, and the Al2O3/Si MOS interfaces.

Fig. 5
Fig. 5

Process flow of carrier-injection type Si in-line optical modulator. (a) Waveguide formation (b) p + and n + region formation by ion implantation and activation. (c) Final structure of SiO2-passivated device after Al electrode formation, (d) Removal of SiO2 passivation layer by wet etching (e) Al2O3 and SiO2 passivation, and (f) Final structure of Al2O3-passivated device after Al electrode formation

Fig. 6
Fig. 6

Top-view of Al2O3-passivated device observed by optical microscopy.

Fig. 7
Fig. 7

Attenuation characteristics of Si modulators passivated by PECVD SiO2 (black), dry-oxidized SiO2 (blue), and Al2O3 (red).

Metrics