Abstract

Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50nm hot-spots in the magnetic recording layer using a laser source operating at 473nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
    [CrossRef]
  2. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
    [CrossRef]
  3. W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [CrossRef]
  4. P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000).
    [CrossRef]
  5. X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  7. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
    [CrossRef] [PubMed]
  8. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
    [CrossRef]
  9. Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [CrossRef] [PubMed]
  10. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
    [CrossRef] [PubMed]
  11. T. Roy, E. T. F. Rogers, N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
    [CrossRef] [PubMed]
  12. E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
    [CrossRef]
  13. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
    [CrossRef] [PubMed]
  14. E. Greenfield, R. Schley, I. Hurwitz, J. Nemirovsky, K. G. Makris, M. Segev, “Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams,” Opt. Express 21(11), 13425–13435 (2013).
    [CrossRef] [PubMed]
  15. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
    [CrossRef]
  16. M. V. Berry, S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen. 39(22), 6965–6977 (2006).
    [CrossRef]
  17. F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
    [CrossRef]
  18. F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
    [CrossRef]
  19. N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
    [CrossRef] [PubMed]
  20. E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
    [CrossRef]
  21. E. T. F. Rogers, N. I. Zheludev, V. Savinov, T. Roy, S. Savo, M. R. Dennis, and J. Lindberg, “Superoscillatory lens device,” GB patent application number GB1201936.0 and PCT patent application number PCT/GB2013/050114 (2012).
  22. A. M. H. Wong, G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
    [CrossRef] [PubMed]
  23. D. Ganic, X. S. Gan, M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
    [CrossRef] [PubMed]
  24. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3(12), 2086–2093 (1986).
    [CrossRef]
  25. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6(6), 786–805 (1989).
    [CrossRef]
  26. V. V. Kotlyar, A. A. Kovalev, “Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization,” J. Opt. Soc. Am. A 27(3), 372–380 (2010).
    [CrossRef] [PubMed]
  27. H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
    [CrossRef]
  28. T. Liu, J. B. Tan, J. Liu, H. T. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
    [CrossRef] [PubMed]
  29. N. Jin, Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
    [CrossRef]
  30. Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
    [CrossRef]
  31. D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [CrossRef]
  32. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [CrossRef]
  33. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [CrossRef] [PubMed]
  34. J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
    [CrossRef]
  35. H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
    [CrossRef]
  36. F. X. Canning, “Corrected Fresnel coefficients for lossy materials,” in IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, 3–8 July (2011).

2013 (7)

T. Roy, E. T. F. Rogers, N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

E. Greenfield, R. Schley, I. Hurwitz, J. Nemirovsky, K. G. Makris, M. Segev, “Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams,” Opt. Express 21(11), 13425–13435 (2013).
[CrossRef] [PubMed]

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[CrossRef]

A. M. H. Wong, G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[CrossRef] [PubMed]

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

T. Liu, J. B. Tan, J. Liu, H. T. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
[CrossRef] [PubMed]

2012 (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

2011 (2)

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

2010 (3)

V. V. Kotlyar, A. A. Kovalev, “Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization,” J. Opt. Soc. Am. A 27(3), 372–380 (2010).
[CrossRef] [PubMed]

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

2008 (4)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
[CrossRef] [PubMed]

2007 (3)

N. Jin, Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[CrossRef]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

2006 (1)

M. V. Berry, S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen. 39(22), 6965–6977 (2006).
[CrossRef]

2005 (1)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000).
[CrossRef]

1999 (2)

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[CrossRef] [PubMed]

1995 (1)

H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
[CrossRef]

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

1990 (1)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[CrossRef]

1989 (1)

1986 (1)

1983 (1)

D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Albrecht, T. R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Balamane, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Bartal, G.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Baumgartl, J.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

Berry, M. V.

M. V. Berry, S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen. 39(22), 6965–6977 (2006).
[CrossRef]

Boone, T. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Campos, J.

Canning, F. X.

F. X. Canning, “Corrected Fresnel coefficients for lossy materials,” in IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, 3–8 July (2011).

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

Challener, W. A.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Chen, Y.

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Chen, Y. F.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Chen, Z. C.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Choi, H.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Cottrell, D. M.

Davis, J. A.

Dennis, M. R.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

Dholakia, K.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

Dobisz, E.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Eleftheriades, G. V.

A. M. H. Wong, G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[CrossRef] [PubMed]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Esashi, M.

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fedotov, V. A.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Fukuda, H.

H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
[CrossRef]

Gage, E. C.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Gan, X. S.

Ganic, D.

Garcia de Abajo, F. J.

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
[CrossRef]

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Gokemeijer, N. J.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Greenfield, E.

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Gu, M.

Guo, W.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Hellwig, O.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Hirotsune, A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Hong, M. H.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Hsia, Y.-T.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Huang, F. M.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Huang, K.

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Hurwitz, I.

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Itagi, A. V.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Jin, N.

N. Jin, Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[CrossRef]

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Ju, G.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Ju, G. P.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Kao, T. S.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Karns, D.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Katine, J. A.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Kercher, D. S.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Khan, A.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[CrossRef]

Kobayashi, Y.

H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
[CrossRef]

Kosmeier, S.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

Kotlyar, V. V.

Kovalev, A. A.

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Li, J.-L.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Li, L.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Lindberg, J.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

Liu, J.

Liu, T.

Liu, Z.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Liu, Z. W.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

Luk’yanchuk, B.

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Makris, K. G.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[CrossRef]

Mansuripur, M.

Mazilu, M.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Minh, P. N.

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000).
[CrossRef]

Moreno, I.

Nemirovsky, J.

Nemoto, H.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Okazaki, S.

H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
[CrossRef]

Ono, T.

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000).
[CrossRef]

Peng, C. B.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, W.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, Y. G.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Poon, C. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Popescu, S.

M. V. Berry, S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen. 39(22), 6965–6977 (2006).
[CrossRef]

Qiu, C. W.

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Rahmat-Samii, Y.

N. Jin, Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[CrossRef]

Rawat, V.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Rho, J.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Robertson, N.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Rogers, E. T. F.

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[CrossRef]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

T. Roy, E. T. F. Rogers, N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

Rottmayer, R. E.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Roy, T.

T. Roy, E. T. F. Rogers, N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Ruiz, R.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Savo, S.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

Schley, R.

Segev, M.

Seigler, M. A.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Stipe, B. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Strand, T. C.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Studna, A. A.

D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tan, J. B.

Tawa, T.

H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
[CrossRef]

Teng, J. H.

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Terris, B. D.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Wang, H. T.

Wang, Z. B.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

Wong, A. M. H.

A. M. H. Wong, G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[CrossRef] [PubMed]

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

Xiong, Y.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Yang, X. M.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Ye, H. P.

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Ye, Z. L.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Yeo, S. P.

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Yin, X. B.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Yzuel, M. J.

Zhang, X.

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zheludev, N.

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Zheludev, N. I.

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[CrossRef]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

T. Roy, E. T. F. Rogers, N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
[CrossRef] [PubMed]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
[CrossRef]

Zhu, X. B.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011).
[CrossRef]

Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[CrossRef]

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

N. Jin, Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007).
[CrossRef]

J. Opt. (1)

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. Math. Gen. (1)

M. V. Berry, S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen. 39(22), 6965–6977 (2006).
[CrossRef]

Laser Phys. Lett. (1)

H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[CrossRef]

Microelectron. Eng. (1)

H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995).
[CrossRef]

Nano Lett. (1)

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Nat. Commun. (2)

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[CrossRef] [PubMed]

J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[CrossRef] [PubMed]

Nat. Mater. (3)

X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[CrossRef] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010).
[CrossRef]

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000).
[CrossRef]

Sci. Rep. (1)

A. M. H. Wong, G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[CrossRef] [PubMed]

Science (1)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (2)

F. X. Canning, “Corrected Fresnel coefficients for lossy materials,” in IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, 3–8 July (2011).

E. T. F. Rogers, N. I. Zheludev, V. Savinov, T. Roy, S. Savo, M. R. Dennis, and J. Lindberg, “Superoscillatory lens device,” GB patent application number GB1201936.0 and PCT patent application number PCT/GB2013/050114 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic configuration of optical needle focused by super-oscillatory lens (SOL) in solid immersion medium for HAMR. The radial transmittance distribution of the binary optical needle SOL mask design for air, SiO2 and GaP is given in (b), (c) and (d) respectively. The transparent areas are white while the opaque areas are black. The region shown is 42μm in diameter, 2μm larger than the optimized mask to show the outmost edge clearly. .

Fig. 2
Fig. 2

Generation of super-oscillatory optical needle in air (top row), SiO2 (middle row) and GaP (bottom row). (a)(d)(g) Normalized total electric field intensity distribution. (b)(e)(h) Variation of FWHM of light spot with propagation direction (blue lines). The diffraction limit in the corresponding media is plotted (red dotted lines) for comparison. (c)(f)(i) Lineout of electric field intensity distribution along the SOL mask diameter at zf = 8μm for air (c) and SiO2 (f), and at zf = 5μm for GaP (i). Insets in (c)(f)(i) show a close-up of the central main lobe.

Fig. 3
Fig. 3

Local wavevector distributions in the super-oscillatory region: (a) air, (b) SiO2 and (c) GaP. k max = n k 0 is the maximum of the band limited wavevectors in the corresponding media. The red lines are at k l o c a l = k max .

Fig. 4
Fig. 4

Performance of super-oscillatory optical needle after solid immersion layer/air interface: (top row) SiO2/air after zf = 8μm, (middle row) GaP/air after zf = 5μm, and (bottom row) air/magnetic disk after zf = 5.01μm. (a) (c) (e) Normalized total electric field intensity distribution. (b) (d) (f) Electric field intensity (blue line) and FWHM (red line) distribution along the axial direction.

Fig. 5
Fig. 5

Angular spectrum of super-oscillatory spot after GaP/air interface: (a) at zf = 5.01μm and (b) at zf = 6μm. Their subtraction is given in (c), which clearly indicates the super-oscillatory spot after the interface is originating from the evanescent components within wavevector ranges [ n k 0 , k 0 ] and [ k 0 , n k 0 ].

Metrics