Abstract

We present a simple surface plasmon resonance imaging (SPRi) sensing system based on some common optoelectronic devices in this paper. Using an optical fiber based SPR sensor as sensing element in our system, the SPRi system is dramatically compact. A small universal LED is used as the light source. The light intensity is record as images that can be captured by a simple web camera. A Microsoft Visual C++6.0 based Windows software program is written to process the image data which contain SPRi information. Experimental results show that the relationship between the relative intensity and RI is a linear relation in a RI range from 1.3396 to 1.3645. Using this SPRi device, we measure the specific binding between the Con A and RNase B, which demonstrates its capability for biomedical selective affinity monitoring. The proposed SPRi sensing system also has the capacity for biochemical multiple channel measurement with further investigation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  2. L. Wu, H. S. Chu, W. S. Koh, E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
    [CrossRef] [PubMed]
  3. A. Abbas, M. J. Linman, Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron. 26(5), 1815–1824 (2011).
    [CrossRef] [PubMed]
  4. T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
    [CrossRef]
  5. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [CrossRef] [PubMed]
  6. L.-M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
    [CrossRef]
  7. M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).
  8. S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1–3), 187–191 (1996).
    [CrossRef]
  9. S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
    [CrossRef] [PubMed]
  10. J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
    [CrossRef] [PubMed]
  11. L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
    [CrossRef] [PubMed]
  12. G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
    [CrossRef] [PubMed]
  13. B. K. Singh, A. C. Hillier, “Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array,” Anal. Chem. 78(6), 2009–2018 (2006).
    [CrossRef] [PubMed]
  14. S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
    [CrossRef] [PubMed]
  15. L. Malic, T. Veres, M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosens. Bioelectron. 24(7), 2218–2224 (2009).
    [CrossRef] [PubMed]
  16. D. Filippini, F. Winquist, I. Lundström, “Computer screen photo-excited surface plasmon resonance imaging,” Anal. Chim. Acta 625(2), 207–214 (2008).
    [CrossRef] [PubMed]
  17. P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
    [CrossRef] [PubMed]
  18. M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
    [CrossRef] [PubMed]
  19. W. Peng, S. Banerji, Y. C. Kim, K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
    [CrossRef] [PubMed]
  20. J. Dostálek, H. Vaisocherova, J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
    [CrossRef]
  21. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  22. A. A. Bergh, P. J. Dean, “Light-emitting diodes,” Proc. IEEE 60(2), 156–223 (1972).
    [CrossRef]
  23. K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
    [CrossRef]
  24. W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
    [CrossRef]
  25. S. F. Cheng, L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
    [CrossRef] [PubMed]

2012 (1)

P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
[CrossRef] [PubMed]

2011 (1)

A. Abbas, M. J. Linman, Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron. 26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

2010 (3)

S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
[CrossRef] [PubMed]

L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
[CrossRef] [PubMed]

L. Wu, H. S. Chu, W. S. Koh, E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18(14), 14395–14400 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[CrossRef] [PubMed]

S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
[CrossRef] [PubMed]

L. Malic, T. Veres, M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosens. Bioelectron. 24(7), 2218–2224 (2009).
[CrossRef] [PubMed]

2008 (2)

D. Filippini, F. Winquist, I. Lundström, “Computer screen photo-excited surface plasmon resonance imaging,” Anal. Chim. Acta 625(2), 207–214 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

2006 (1)

B. K. Singh, A. C. Hillier, “Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array,” Anal. Chem. 78(6), 2009–2018 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Peng, S. Banerji, Y. C. Kim, K. S. Booksh, “Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications,” Opt. Lett. 30(22), 2988–2990 (2005).
[CrossRef] [PubMed]

J. Dostálek, H. Vaisocherova, J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[CrossRef]

2004 (4)

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[CrossRef] [PubMed]

T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[CrossRef]

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

2003 (1)

S. F. Cheng, L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

1996 (1)

S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1–3), 187–191 (1996).
[CrossRef]

1994 (1)

W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
[CrossRef]

1993 (1)

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

1988 (2)

L.-M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
[CrossRef] [PubMed]

1972 (1)

A. A. Bergh, P. J. Dean, “Light-emitting diodes,” Proc. IEEE 60(2), 156–223 (1972).
[CrossRef]

Abbas, A.

A. Abbas, M. J. Linman, Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron. 26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Aleggret, S.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

Alonso-Chamarro, J.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

Banerji, S.

Bender, W. J. H.

W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
[CrossRef]

Bergh, A. A.

A. A. Bergh, P. J. Dean, “Light-emitting diodes,” Proc. IEEE 60(2), 156–223 (1972).
[CrossRef]

Booksh, K. S.

Bremer, M. G. E. G.

S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
[CrossRef] [PubMed]

Chau, L. K.

S. F. Cheng, L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

Chen, H. L.

T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[CrossRef]

Cheng, Q.

A. Abbas, M. J. Linman, Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron. 26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Cheng, S. F.

S. F. Cheng, L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

Chu, H. S.

Claus, R. O.

W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
[CrossRef]

Corn, R. M.

L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
[CrossRef] [PubMed]

Dean, P. J.

A. A. Bergh, P. J. Dean, “Light-emitting diodes,” Proc. IEEE 60(2), 156–223 (1972).
[CrossRef]

Dessy, R. E.

W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
[CrossRef]

Dostálek, J.

J. Dostálek, H. Vaisocherova, J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[CrossRef]

Filippini, D.

P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
[CrossRef] [PubMed]

D. Filippini, F. Winquist, I. Lundström, “Computer screen photo-excited surface plasmon resonance imaging,” Anal. Chim. Acta 625(2), 207–214 (2008).
[CrossRef] [PubMed]

Gifford, L. K.

L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
[CrossRef] [PubMed]

Gonzalez, M. C.

P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
[CrossRef] [PubMed]

Graces, I.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

Haasnoot, W.

S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
[CrossRef] [PubMed]

Hillier, A. C.

B. K. Singh, A. C. Hillier, “Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array,” Anal. Chem. 78(6), 2009–2018 (2006).
[CrossRef] [PubMed]

Ho, H. P.

Homola, J.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Dostálek, H. Vaisocherova, J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[CrossRef]

Iwasaki, Y.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Jiang, S.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1–3), 187–191 (1996).
[CrossRef]

Kawata, S.

Kim, Y. C.

Koh, W. S.

Kong, S. K.

Kurihara, K.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Ladd, J.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

Law, W. C.

Li, E. P.

Lin, C.

Linman, M. J.

A. Abbas, M. J. Linman, Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron. 26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Liu, F.

T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[CrossRef]

Lopez, R.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

Lundström, I.

D. Filippini, F. Winquist, I. Lundström, “Computer screen photo-excited surface plasmon resonance imaging,” Anal. Chim. Acta 625(2), 207–214 (2008).
[CrossRef] [PubMed]

Lupták, A.

L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
[CrossRef] [PubMed]

Malic, L.

L. Malic, T. Veres, M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosens. Bioelectron. 24(7), 2218–2224 (2009).
[CrossRef] [PubMed]

Mascini, M.

S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
[CrossRef] [PubMed]

Mateo, J.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

Matsubara, K.

Miller, M. S.

W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
[CrossRef]

Minami, S.

Minunni, M.

S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
[CrossRef] [PubMed]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1–3), 187–191 (1996).
[CrossRef]

Niwa, O.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Norde, W.

S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
[CrossRef] [PubMed]

Ohkawa, H.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Peng, W.

Piliarik, M.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[CrossRef] [PubMed]

Preechaburana, P.

P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
[CrossRef] [PubMed]

Rebe Raz, S.

S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
[CrossRef] [PubMed]

Scarano, S.

S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
[CrossRef] [PubMed]

Sendroiu, I. E.

L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
[CrossRef] [PubMed]

Singh, B. K.

B. K. Singh, A. C. Hillier, “Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array,” Anal. Chem. 78(6), 2009–2018 (2006).
[CrossRef] [PubMed]

Steiner, G.

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[CrossRef] [PubMed]

Suska, A.

P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
[CrossRef] [PubMed]

Suzuki, K.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Tabrizian, M.

L. Malic, T. Veres, M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosens. Bioelectron. 24(7), 2218–2224 (2009).
[CrossRef] [PubMed]

Taylor, A. D.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

Tichý, I.

M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[CrossRef] [PubMed]

Tobita, T.

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Tu, C. W.

T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[CrossRef]

Turner, A. P. F.

S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
[CrossRef] [PubMed]

Uttamchandani, D.

L.-M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

Vaisocherova, H.

J. Dostálek, H. Vaisocherova, J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[CrossRef]

Vala, M.

M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[CrossRef] [PubMed]

Veres, T.

L. Malic, T. Veres, M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosens. Bioelectron. 24(7), 2218–2224 (2009).
[CrossRef] [PubMed]

Vidal, M. M. B.

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

Wang, T. J.

T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[CrossRef]

Winquist, F.

D. Filippini, F. Winquist, I. Lundström, “Computer screen photo-excited surface plasmon resonance imaging,” Anal. Chim. Acta 625(2), 207–214 (2008).
[CrossRef] [PubMed]

Wu, L.

Wu, S. Y.

Yee, S. S.

S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1–3), 187–191 (1996).
[CrossRef]

Zhang, L.-M.

L.-M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

Anal. Bioanal. Chem. (2)

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393(4), 1157–1163 (2009).
[CrossRef] [PubMed]

G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004).
[CrossRef] [PubMed]

Anal. Chem. (4)

B. K. Singh, A. C. Hillier, “Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array,” Anal. Chem. 78(6), 2009–2018 (2006).
[CrossRef] [PubMed]

S. Rebe Raz, M. G. E. G. Bremer, W. Haasnoot, W. Norde, “Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor,” Anal. Chem. 81(18), 7743–7749 (2009).
[CrossRef] [PubMed]

W. J. H. Bender, R. E. Dessy, M. S. Miller, R. O. Claus, “Feasibility of a chemical microsensor based on surface plasmon resonance on fiber optics modified by multilayer vapor deposition,” Anal. Chem. 66(7), 963–970 (1994).
[CrossRef]

S. F. Cheng, L. K. Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing,” Anal. Chem. 75(1), 16–21 (2003).
[CrossRef] [PubMed]

Anal. Chim. Acta (2)

D. Filippini, F. Winquist, I. Lundström, “Computer screen photo-excited surface plasmon resonance imaging,” Anal. Chim. Acta 625(2), 207–214 (2008).
[CrossRef] [PubMed]

K. Kurihara, H. Ohkawa, Y. Iwasaki, O. Niwa, T. Tobita, K. Suzuki, “Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber,” Anal. Chim. Acta 523(2), 165–170 (2004).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

P. Preechaburana, M. C. Gonzalez, A. Suska, D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (4)

M. Piliarik, M. Vala, I. Tichý, J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009).
[CrossRef] [PubMed]

S. Scarano, M. Mascini, A. P. F. Turner, M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosens. Bioelectron. 25(5), 957–966 (2010).
[CrossRef] [PubMed]

A. Abbas, M. J. Linman, Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron. 26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

L. Malic, T. Veres, M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosens. Bioelectron. 24(7), 2218–2224 (2009).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Electron. Lett. (1)

L.-M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 24(23), 1469–1470 (1988).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. J. Wang, C. W. Tu, F. Liu, H. L. Chen, “Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation,” IEEE Photonics Technol. Lett. 16(7), 1715–1717 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

L. K. Gifford, I. E. Sendroiu, R. M. Corn, A. Lupták, “Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces,” J. Am. Chem. Soc. 132(27), 9265–9267 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Proc. IEEE (1)

A. A. Bergh, P. J. Dean, “Light-emitting diodes,” Proc. IEEE 60(2), 156–223 (1972).
[CrossRef]

Sens. Actuators B Chem. (3)

M. M. B. Vidal, R. Lopez, S. Aleggret, J. Alonso-Chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B Chem. 11(1), 455–459 (1993).

S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1–3), 187–191 (1996).
[CrossRef]

J. Dostálek, H. Vaisocherova, J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B Chem. 108(1–2), 758–764 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematics of fiber optic surface plasmon resonance imaging sensing system (a) Experimental setup for sensor measurement. Sample is pumped with a peristaltic pump, the SPRi sensing system based on common optoelectronic components is monitored by a laptop; (b) System illustration of fiber optic SPRi sensing system.

Fig. 2
Fig. 2

Schematic diagram of fiber optic SPRi sensor.

Fig. 3
Fig. 3

Absorption spectra detection of fiber optic SPR sensor (a)Experiment setup for measuring the absorption spectra of the optic fiber SPR sensor; (b) Absorption spectra of fiber optic SPRi sensor in different RIs.

Fig. 4
Fig. 4

Image detected from fiber end face of SPRi sensor. (a) Detected image when SPR probe in the air; (b) Intensity transformed gray image; (c) Three-dimensional intensity distribution of the light spots.

Fig. 5
Fig. 5

LED Light intensity fluctuation of the fiber optic SPRi system.

Fig. 6
Fig. 6

(a)-(c) Images of the measuring channel when the fiber optic SPRi sensor head immersed in the sodium chloride solutions with different RIs. (d) The three-dimensional intensity distribution of the light spots; (e) the two-dimensional intensity distribution of the light spots.

Fig. 7
Fig. 7

Refreractive index testing by using fiber optic SPRi sensor system (a) The intensity of the light spot change in response to different RI solutions. (b) Number of the overexposed pixels change in response to different RI solutions.

Fig. 8
Fig. 8

Schematic diagram of a dual-channel self-compensated fiber optic SPRi sensing. (a) Optical configuration of the designed dual-channel sensor; (b) Experimental set up to illustrate show the relative positions of the reference channel and measuring channel relative to LED.

Fig. 9
Fig. 9

RI measurement of dual-channel self-compensated fiber optic SPRi image system. (a) Light intensity changes of the reference channel and measuring channel during the measurement, the insert picture shows photograph of the reference channel and measuring channel. (b) RI response of the fiber optic SPRi system.

Fig. 10
Fig. 10

Dual-channel self-compensated fiber optic SPRi image system for specific binding detection between RNase B and Con A with different concentrations.

Fig. 11
Fig. 11

Image detected from a 9-channel fiber optic SPRi sensor configuration.

Metrics