L. Li, F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[CrossRef]
[PubMed]

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[CrossRef]

R. K. Amineh, G. V. Eleftheriades, “2D and 3D sub-diffraction source imaging with a superoscillatory filter,” Opt. Express 21(7), 8142–8156 (2013).

[CrossRef]
[PubMed]

L. Li, B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[CrossRef]

A. M. H. Wong, G. V. Eleftheriades, “Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays,” IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

[CrossRef]

S. Gazit, A. Szameit, Y. C. Eldar, M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).

[CrossRef]
[PubMed]

F. M. Huang, N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[CrossRef]
[PubMed]

X. Zhang, Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982).

[PubMed]

E. J. Candes, C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” (submitted) (2014).

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982).

[PubMed]

E. J. Candes, C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” (submitted) (2014).

F. M. Huang, N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[CrossRef]
[PubMed]

L. Li, B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[CrossRef]

L. Li, F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[CrossRef]
[PubMed]

L. Li, F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[CrossRef]
[PubMed]

L. Li, B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[CrossRef]

X. Zhang, Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[CrossRef]

A. M. H. Wong, G. V. Eleftheriades, “Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays,” IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

[CrossRef]

X. Zhang, Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[CrossRef]
[PubMed]

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[CrossRef]

F. M. Huang, N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[CrossRef]
[PubMed]

A. M. H. Wong, G. V. Eleftheriades, “Adaptation of Schelkunoff’s superdirective antenna theory for the realization of superoscillatory antenna arrays,” IEEE Antennas Wirel. Propag. Lett. 9, 315–318 (2010).

[CrossRef]

L. Li, B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[CrossRef]

E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[CrossRef]

F. M. Huang, N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).

[CrossRef]
[PubMed]

X. Zhang, Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).

[CrossRef]
[PubMed]

S. Gazit, A. Szameit, Y. C. Eldar, M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17(26), 23920–23946 (2009).

[CrossRef]
[PubMed]

R. K. Amineh, G. V. Eleftheriades, “2D and 3D sub-diffraction source imaging with a superoscillatory filter,” Opt. Express 21(7), 8142–8156 (2013).

[CrossRef]
[PubMed]

L. Li, F. Li, “Beating the Rayleigh limit: orbital-angular-momentum-based super-resolution diffraction tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(3), 033205 (2013).

[CrossRef]
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).

[CrossRef]
[PubMed]

A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4(4), 336–350 (1982).

[PubMed]

L. Li, X. Xu, and F. Li, “Towards super-resolution microwave imaging: general framework,” 10th International Symposium On Antenna, Propagation & EM Theory (2012).

[CrossRef]

E. J. Candes, C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” (submitted) (2014).