Abstract

We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2.3 W single transverse mode thulium-doped ZBLAN fiber laser at 1480 nm

G. Androz, M. Bernier, D. Faucher, and R. Vallée
Opt. Express 16(20) 16019-16031 (2008)

Diode-pumped mid-infrared fiber laser with 50% slope efficiency

Yigit Ozan Aydın, Vincent Fortin, Frédéric Maes, Frédéric Jobin, Stuart D. Jackson, Réal Vallée, and Martin Bernier
Optica 4(2) 235-238 (2017)

High-power in-band pumped Er:YAG laser at 1617 nm

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson
Opt. Express 16(8) 5807-5812 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [Crossref] [PubMed]
  2. N. Sugimoto, N. Sims, K. Chan, and D. K. Killinger, “Eye-safe 2.1-μ m Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15(6), 302–304 (1990).
    [Crossref] [PubMed]
  3. D. E. Johnson, “Use of the holmium:YAG (Ho:YAG) laser for treatment of superficial bladder carcinoma,” Lasers Surg. Med. 14(3), 213–218 (1994).
    [Crossref] [PubMed]
  4. A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
    [Crossref] [PubMed]
  5. S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
    [Crossref] [PubMed]
  6. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [Crossref] [PubMed]
  7. K. Oh, T. F. Morse, A. Kilian, L. Reinhart, and P. M. Weber, “Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19(4), 278–280 (1994).
    [Crossref] [PubMed]
  8. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
    [Crossref] [PubMed]
  9. S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
    [Crossref]
  10. B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B 78(3-4), 325–333 (2004).
    [Crossref]
  11. R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94μm,” Electron. Lett. 47(19), 1089–1090 (2011).
    [Crossref]
  12. Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
    [Crossref]
  13. D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
    [Crossref] [PubMed]
  14. J. Liu and P. Wang, “High-power broadband thulium-doped all-fiber superfluorescent source at 2µm,” IEEE Photonics Technol. Lett. 25(3), 242–245 (2013).
    [Crossref]
  15. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  16. C. Guo, D. Shen, J. Long, and F. Wang, “High-power and widely tunable Tm-doped fiber laser at 2 µm,” Chin. Opt. Lett. 10(9), 091406 (2012).
    [Crossref]
  17. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
    [Crossref] [PubMed]
  18. M. Tokurakawa, J. M. O. Daniel, S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength swept Tm-Doped fiber laser,” in CLEO Europe-IQEC (2013), pp. 12–16.
  19. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
    [Crossref]
  20. S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett. 32(22), 3349–3351 (2007).
    [Crossref] [PubMed]
  21. A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617–1618 (2010).
    [Crossref]
  22. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  23. S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
    [Crossref]
  24. R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
    [Crossref]
  25. R. Allen and L. Esterowitz, “CW diode pumped 2.3 μm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
    [Crossref]
  26. R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
    [Crossref]
  27. R. M. El-Agmy and N. M. Al-Hosiny, “2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fiber lasers,” Electron. Lett. 46, 936–937 (2010).
    [Crossref]
  28. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
    [Crossref]
  29. A. Guhur and S. D. Jackson, “Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm,” Opt. Express 18(19), 20164–20169 (2010).
    [Crossref] [PubMed]
  30. J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
    [Crossref]
  31. G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
    [Crossref]
  32. S. Tanaka, H. Yokosuka, T. Ogawa, and N. Takahashi, “Wavelength-switchable fiber laser for thermally stabilized fiber Bragg grating vibration sensor array,” in Proc. IEEE Sensors (2004), pp. 1301–1304.
    [Crossref]
  33. Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technol. Lett. 14(5), 612–614 (2002).
    [Crossref]
  34. C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).
  35. J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
    [Crossref]
  36. I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
    [Crossref]
  37. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
    [Crossref] [PubMed]
  38. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [Crossref]
  39. Y. Kimura and M. Nakazawa, “Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm,” J. Appl. Phys. 64(2), 516–520 (1988).
    [Crossref]
  40. M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65–72 (2012).
    [Crossref]
  41. E. Desurvire, “Analysis of gain difference between forward-and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
    [Crossref]
  42. A. Yeniay and R. Gao, “Single stage high power L-band EDFA with multiple C-band seeds,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002).
    [Crossref]
  43. E. Yahel and A. Hardy, “Amplified spontaneous emission in high-power, Er3+-Yb3+ codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B 20(6), 1198–1203 (2003).
    [Crossref]
  44. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  45. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]

2013 (5)

2012 (2)

C. Guo, D. Shen, J. Long, and F. Wang, “High-power and widely tunable Tm-doped fiber laser at 2 µm,” Chin. Opt. Lett. 10(9), 091406 (2012).
[Crossref]

M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65–72 (2012).
[Crossref]

2011 (1)

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94μm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

2010 (3)

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

R. M. El-Agmy and N. M. Al-Hosiny, “2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fiber lasers,” Electron. Lett. 46, 936–937 (2010).
[Crossref]

A. Guhur and S. D. Jackson, “Efficient holmium-doped fluoride fiber laser emitting 2.1 µm and blue upconversion fluorescence upon excitation at 2 µm,” Opt. Express 18(19), 20164–20169 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (4)

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett. 32(22), 3349–3351 (2007).
[Crossref] [PubMed]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
[Crossref]

2006 (2)

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

2005 (1)

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

2004 (3)

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

2003 (1)

2002 (2)

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technol. Lett. 14(5), 612–614 (2002).
[Crossref]

2001 (1)

S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[Crossref]

1999 (2)

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

1998 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

1994 (2)

K. Oh, T. F. Morse, A. Kilian, L. Reinhart, and P. M. Weber, “Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19(4), 278–280 (1994).
[Crossref] [PubMed]

D. E. Johnson, “Use of the holmium:YAG (Ho:YAG) laser for treatment of superficial bladder carcinoma,” Lasers Surg. Med. 14(3), 213–218 (1994).
[Crossref] [PubMed]

1992 (1)

E. Desurvire, “Analysis of gain difference between forward-and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

1991 (3)

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
[Crossref]

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

1990 (1)

1989 (2)

1988 (1)

Y. Kimura and M. Nakazawa, “Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm,” J. Appl. Phys. 64(2), 516–520 (1988).
[Crossref]

Ahmad, H.

M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65–72 (2012).
[Crossref]

Aiwu, L.

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Alam, S. U.

Al-Hosiny, N. M.

R. M. El-Agmy and N. M. Al-Hosiny, “2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fiber lasers,” Electron. Lett. 46, 936–937 (2010).
[Crossref]

Allen, R.

R. Allen and L. Esterowitz, “CW diode pumped 2.3 μm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Alvarez-Chavez, J. A.

J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
[Crossref]

Antipov, S. O.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Anzueto-Sanchez, G.

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Arai, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

Baranikov, A. V.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

Baumgartner, R.

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

Bennetts, S.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Bugge, F.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Carter, A.

Carter, J. N.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
[Crossref]

Carter, S. F.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

Chan, K.

Chaudhuri, P. R.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

Clarkson, W. A.

Davey, S. T.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

David, D.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Delepine, R.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Desurvire, E.

E. Desurvire, “Analysis of gain difference between forward-and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

Dong, X. Y.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

El-Agmy, R. M.

R. M. El-Agmy and N. M. Al-Hosiny, “2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fiber lasers,” Electron. Lett. 46, 936–937 (2010).
[Crossref]

Erbert, G.

Esterowitz, L.

R. Allen and L. Esterowitz, “CW diode pumped 2.3 μm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Feng, S. C.

Feng, T.

Futao, S.

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Glenn, W. H.

Graindorge, P.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Grevers, G.

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Guhur, A.

Guo, C.

Guo, X.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hale, C. P.

Hanna, D. C.

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
[Crossref]

Hardy, A.

Harun, S. W.

M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65–72 (2012).
[Crossref]

Haub, J.

Heidt, A. M.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hemming, A.

Henderson, S. W.

Hong, N. J.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

Huffaker, A. V.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Ishihara, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

Jackson, S. D.

Janda, P.

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

Johnson, D. E.

D. E. Johnson, “Use of the holmium:YAG (Ho:YAG) laser for treatment of superficial bladder carcinoma,” Lasers Surg. Med. 14(3), 213–218 (1994).
[Crossref] [PubMed]

Jung, Y.

Kamynin, V. A.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Kavaya, M. J.

Kikuchi, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

Kilian, A.

Killinger, D. K.

Kimura, Y.

Y. Kimura and M. Nakazawa, “Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm,” J. Appl. Phys. 64(2), 516–520 (1988).
[Crossref]

King, T. A.

Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[Crossref] [PubMed]

Ko, D. K.

Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Kurkov, A. S.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Lancaster, D. G.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Lee, J. M.

Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Leunig, A.

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

Li, J.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94μm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

Li, Q.

Li, R.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94μm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

Li, Z.

Lit, J. W. Y.

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technol. Lett. 14(5), 612–614 (2002).
[Crossref]

Liu, J.

J. Liu and P. Wang, “High-power broadband thulium-doped all-fiber superfluorescent source at 2µm,” IEEE Photonics Technol. Lett. 25(3), 242–245 (2013).
[Crossref]

Liu, S.

Long, J.

Lu, C.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Magee, J. R.

Mao, Q. H.

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technol. Lett. 14(5), 612–614 (2002).
[Crossref]

Marakulin, A. V.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Martin, P.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Martinez-Gamez, A.

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Martinez-Rios, A.

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Martínez-Rios, A.

J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
[Crossref]

Medvedkov, O. I.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Meltz, G.

Minashina, L. A.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Moghaddam, M. R. A.

M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65–72 (2012).
[Crossref]

Monzon-Hernandez, D.

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Morey, W. W.

Morse, T. F.

Nakazawa, M.

Y. Kimura and M. Nakazawa, “Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm,” J. Appl. Phys. 64(2), 516–520 (1988).
[Crossref]

Ngo, N. Q.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Nilsson, J.

Offerhaus, H. L.

J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
[Crossref]

Oh, K.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

Pearson, L.

Pellegri, O.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Peng, W. J.

Percival, R. M.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

Qingyu, D.

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Reinhart, L.

Richardson, D. J.

Sabella, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

Sacks, Z. S.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Sahu, J. K.

Sato, S.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

Schiffer, Z.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Sekita, H.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

Selvas-Aguilar, R.

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Shen, D.

Shen, D. Y.

Shterengas, L.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94μm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

Simakov, N.

Sims, N.

Smart, R. G.

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
[Crossref]

Souhaite, G.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Sroka, R.

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

Stallard, W. A.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

Stellmacher, M.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Sugimoto, N.

Sumiyoshi, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

Szebesta, D.

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

Tan, S. Y.

Tjin, S. C.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Torres-Gomez, I.

J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
[Crossref]

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
[Crossref]

Tsang, Y. H.

Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

Turner, P. W.

Vassilakis, E.

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

Wang, F.

Wang, P.

J. Liu and P. Wang, “High-power broadband thulium-doped all-fiber superfluorescent source at 2µm,” IEEE Photonics Technol. Lett. 25(3), 242–245 (2013).
[Crossref]

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

Weber, P. M.

Wentong, Z.

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Yahel, E.

Yan, F. P.

Yan, Z.

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Yang, J. L.

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Yang, X. F.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

Zhao, C. L.

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

Appl. Opt. (1)

Appl. Phys. B (2)

B. M. Walsh and N. P. Barnes, “Comparison of Tm: ZBLAN and Tm: silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B 78(3-4), 325–333 (2004).
[Crossref]

J. L. Yang, S. C. Tjin, and N. Q. Ngo, “A novel wavelength switchable fiber laser source and its application in photonics beamforming for optically controlled phased array antenna,” Appl. Phys. B 78(3–4), 345–349 (2004).
[Crossref]

Appl. Phys. Lett. (1)

R. Allen and L. Esterowitz, “CW diode pumped 2.3 μm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (5)

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94μm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

S. D. Jackson, “8.8 W diode-cladding-pumped Tm3+, Ho3+-doped fluoride fibre laser,” Electron. Lett. 37(13), 821–822 (2001).
[Crossref]

R. M. El-Agmy and N. M. Al-Hosiny, “2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+: ZBLAN fiber lasers,” Electron. Lett. 46, 936–937 (2010).
[Crossref]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey, and W. A. Stallard, “Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μm,” Electron. Lett. 27(21), 1912–1913 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2- μm cascade Ho3+: ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).
[Crossref]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Q. H. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photonics Technol. Lett. 14(5), 612–614 (2002).
[Crossref]

C. L. Zhao, X. F. Yang, C. Lu, N. J. Hong, X. Guo, P. R. Chaudhuri, and X. Y. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” IEEE Photonics Technol. Lett. 230, 313–317 (2004).

J. Liu and P. Wang, “High-power broadband thulium-doped all-fiber superfluorescent source at 2µm,” IEEE Photonics Technol. Lett. 25(3), 242–245 (2013).
[Crossref]

E. Desurvire, “Analysis of gain difference between forward-and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

J. Appl. Phys. (1)

Y. Kimura and M. Nakazawa, “Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm,” J. Appl. Phys. 64(2), 516–520 (1988).
[Crossref]

J. Mod. Opt. (1)

Y. H. Tsang, T. A. King, D. K. Ko, and J. M. Lee, “Broadband amplified spontaneous emission double-clad fiber source with central wavelengths near 2 µm,” J. Mod. Opt. 53(7), 991–1001 (2006).
[Crossref]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Laryngoscope (1)

A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109(10), 1690–1695 (1999).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

J. A. Alvarez-Chavez, A. Martínez-Rios, I. Torres-Gomez, and H. L. Offerhaus, “Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array,” Laser Phys. Lett. 4(12), 880–883 (2007).
[Crossref]

Lasers Surg. Med. (1)

D. E. Johnson, “Use of the holmium:YAG (Ho:YAG) laser for treatment of superficial bladder carcinoma,” Lasers Surg. Med. 14(3), 213–218 (1994).
[Crossref] [PubMed]

Opt. Commun. (1)

R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82(5–6), 563–570 (1991).
[Crossref]

Opt. Express (3)

Opt. Lett. (9)

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
[Crossref] [PubMed]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[Crossref] [PubMed]

K. Oh, T. F. Morse, A. Kilian, L. Reinhart, and P. M. Weber, “Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19(4), 278–280 (1994).
[Crossref] [PubMed]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
[Crossref] [PubMed]

N. Sugimoto, N. Sims, K. Chan, and D. K. Killinger, “Eye-safe 2.1-μ m Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15(6), 302–304 (1990).
[Crossref] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett. 32(22), 3349–3351 (2007).
[Crossref] [PubMed]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[Crossref] [PubMed]

Opt. Photonics J. (1)

M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, “Comparison between analytical solution and experimental setup of a short long ytterbium doped fiber laser,” Opt. Photonics J. 2(2), 65–72 (2012).
[Crossref]

Opt. Rev. (1)

I. Torres-Gomez, A. Martinez-Rios, G. Anzueto-Sanchez, R. Selvas-Aguilar, A. Martinez-Gamez, and D. Monzon-Hernandez, “Multi-wavelength-switchable double clad Yb3+-doped fiber laser based on reflectivity control of fiber Bragg gratings by induced bend loss,” Opt. Rev. 12, 65–68 (2005).
[Crossref]

Pediatr. Surg. Int. (1)

S. Futao, Z. Wentong, Z. Yan, D. Qingyu, and L. Aiwu, “Application of endoscopic Ho:YAG laser incision technique treating urethral strictures and urethral atresias in pediatric patients,” Pediatr. Surg. Int. 22(6), 514–518 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm: silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Quantum Electron. (1)

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron. 43(7), 603–604 (2013).
[Crossref]

Other (4)

M. Tokurakawa, J. M. O. Daniel, S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength swept Tm-Doped fiber laser,” in CLEO Europe-IQEC (2013), pp. 12–16.

A. Yeniay and R. Gao, “Single stage high power L-band EDFA with multiple C-band seeds,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002).
[Crossref]

G. Souhaite, R. Delepine, O. Pellegri, E. Vassilakis, M. Stellmacher, P. Graindorge, and P. Martin, “16 channels, switchable external cavity-based multi-wavelength laser for DWDM applications,” in Proc. 27th ECOC 2 (2001), pp. 196–197.
[Crossref]

S. Tanaka, H. Yokosuka, T. Ogawa, and N. Takahashi, “Wavelength-switchable fiber laser for thermally stabilized fiber Bragg grating vibration sensor array,” in Proc. IEEE Sensors (2004), pp. 1301–1304.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Experimental setup of the all-fiber Tm3+-doped ASE sources based on (a) backward and (b) forward output.
Fig. 2
Fig. 2 (a) Measured backward and forward ASE emission spectra at different launched pump powers, and the absorption and emission cross-sections of Tm3+-doped fiber extracted from Ref. [19] are also given; (b) Energy-level re-absorption process of Tm+3-doped fiber laser; (c) Output powers of backward and forward ASE as a function of launched pump power; (d) Backward ASE spectra at different fiber lengths of 13.0 m, 11.0 m, 8.0 m and 5.0 m under launched pump power of 8 W.
Fig. 3
Fig. 3 Measured transmission spectra of the FBGs inscribed in SM28 and SM2000 fibers, respectively.
Fig. 4
Fig. 4 Experimental setup of Tm3+-doped silica fiber laser with counter-propagating scheme employing (a) ~3.5% reflectivity of cleaved fiber end and (b) ~50% low reflective (LR) FBG as output coupling reflectors.
Fig. 5
Fig. 5 Output spectra of Tm3+-doped fiber lasers at 400 nm spectrum range for cavity constructed by perpendicular cleaved fiber end and HR FBGs. From left to right these center wavelengths were1974.7 nm, 1997.5 nm, 2026.2 nm, 2056.8 nm, 2074.3 nm, 2102.4 nm, 2125.7 nm, and 2151.02 nm, respectively. The scanning resolution was 0.5 nm.
Fig. 6
Fig. 6 Output spectra of Tm3+-doped fiber laser for cavity constructed by perpendicularly cleaved fiber end and HR FBGs with different center wavelengths. The scanning range and resolution were 1 nm and 0.02 nm, respectively.
Fig. 7
Fig. 7 Output laser power as a function of launched pump power with different center wavelengths of 1974.7 nm, 1997.5 nm, 2026.2 nm, 2056.8 nm, 2074.3 nm, 2102.4 nm, 2125.7 nm, and 2151.02 nm.
Fig. 8
Fig. 8 Output spectra of Tm3+-doped fiber laser at 400 nm spectrum range for cavity constructed by LR FBG and HR FBG. From left to right these center wavelength were 1925.6 nm, 1951.2 nm, 2174.9 nm, and 2198.4, respectively. The scanning resolution was set at 0.5 nm.
Fig. 9
Fig. 9 Output spectra of Tm3+-doped fiber laser for cavity constructed by LR FBGs and HR FBGs with different center wavelengths. The scanning range and resolution were 1 nm and 0.02 nm, respectively.
Fig. 10
Fig. 10 Output laser power as a function of launched pump power with different center wavelengths of 1925.6 nm, 1951.2 nm, 2174.9 nm and 2198.4 nm.
Fig. 11
Fig. 11 Dependence of laser slope efficiency and threshold on center wavelength by employing perpendicularly cleaved fiber end and LR FBG as output coupler, respectively.
Fig. 12
Fig. 12 Experimental setup of multi-wavelength switchable Tm3+-doped silica fiber laser.
Fig. 13
Fig. 13 (a) Transmission spectrum of the FBG array and (b) output spectra of the multi-wavelength switchable Tm3+-doped fiber laser.

Metrics