Abstract

We propose the use of interleaved graphene sections on top of a silicon waveguide to implement tunable Bragg gratings. The filter central wavelength and bandwidth can be controlled changing the chemical potential of the graphene sections. Apodization techniques are also presented.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon graphene waveguide tunable broadband microwave photonics phase shifter

José Capmany, David Domenech, and Pascual Muñoz
Opt. Express 22(7) 8094-8100 (2014)

Graphene Bragg gratings on microfiber

B. C. Yao, Y. Wu, A. Q. Zhang, F. Wang, Y. J. Rao, Y. Gong, W. L. Zhang, Z. G. Wang, K. S. Chiang, and M. Sumetsky
Opt. Express 22(20) 23829-23835 (2014)

Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate

Lin Chen, Tian Zhang, Xun Li, and Guoping Wang
Opt. Express 21(23) 28628-28637 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  2. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  3. B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
    [Crossref]
  4. F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  5. Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20(21), 23201–23214 (2012).
    [Crossref] [PubMed]
  6. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  7. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref] [PubMed]
  8. Z. Lu and L. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490–1496 (2012).
    [Crossref]
  9. M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. De Angelis, A. Locatelli, and A.-D. Capobianco, “Graphene-assisted critically-coupled optical ring modulator,” Opt. Express 20(21), 23144–23155 (2012).
    [Crossref] [PubMed]
  10. L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
    [Crossref]
  11. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
    [Crossref] [PubMed]
  12. G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  13. A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
    [Crossref]
  14. J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
    [Crossref] [PubMed]
  15. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  16. See http://camfr.sourceforge.net/ .
  17. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994).
    [Crossref]
  18. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21(21), 25120–25147 (2013).
    [Crossref] [PubMed]
  19. M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only-sampled fiber Bragg grating,” Opt. Express 16(23), 19388–19394 (2008).
    [Crossref] [PubMed]

2014 (2)

A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
[Crossref]

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

2013 (2)

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “Integrated waveguide Bragg gratings for microwave photonics signal processing,” Opt. Express 21(21), 25120–25147 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (1)

F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2008 (2)

G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

M. Li, H. Li, and Y. Painchaud, “Multi-channel notch filter based on a phase-shift phase-only-sampled fiber Bragg grating,” Opt. Express 16(23), 19388–19394 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1994 (1)

Azaña, J.

Bonnacorso, F.

F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Boscolo, S.

Burla, M.

Capobianco, A.-D.

Chen, Y.

Chrostowski, L.

Cortés, L. R.

Dai, T.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

De Angelis, C.

de Sterke, C. M.

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Feng, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hasan, T.

F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hu, T.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

Jena, D.

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

Jiang, X.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

Jin, Y.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kim, J.

A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
[Crossref]

Li, H.

Li, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Li, M.

Li, W.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Li, Y.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20(21), 23201–23214 (2012).
[Crossref] [PubMed]

Liu, L.

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Locatelli, A.

Lu, S.

Lu, Z.

Majundar, A.

A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
[Crossref]

Midrio, M.

Moresco, M.

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Painchaud, Y.

Pei, C.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

Poladian, L.

Qi, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Qi, L.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Qian, X.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Romagnoli, M.

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

Shen, A.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

Sipe, J. E.

Sun, Z.

F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vuckovick, J.

A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
[Crossref]

Wan, F.

A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, X.

Wen, S.

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

Xu, C.

Yan, R.

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

Yang, J.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

Yang, L.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, H.

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, C.

Zhao, L.

Zheng, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Majundar, J. Kim, J. Vuckovick, and F. Wan, “Graphene for Tunable Nanophotonic Resonators,” IEEE J. Sel. Top. Quantum Electron. 20(1), 68–71 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, “Proposal for a 2×2 Optical Switch Based on Graphene-Silicon-Waveguide Microring,” IEEE Photon. Technol. Lett. 26(3), 235–238 (2014).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref] [PubMed]

Nanoscale (1)

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4(16), 4883–4899 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonnacorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Proc. IEEE (1)

B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, and H. G. Xing, “Graphene for Reconfigurable THz Optoelectronics,” Proc. IEEE 101(7), 1705–1716 (2013).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

See http://camfr.sourceforge.net/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Deep silicon waveguide with a layer of graphene placed on top of it.

Fig. 2
Fig. 2

Effective index and losses (inset) for the TM fundamental mode of a deep GSW versus the chemical potential (T = 300°K and 1 / Γ = 5 x 10 13 sec).

Fig. 3
Fig. 3

Layout of the proposed silicon graphene Bragg grating.

Fig. 4
Fig. 4

Bidimensional normalized field amplitude (left) and normalized field amplitude for the X = 0 axis (right) in a grating section without (upper) and with (lower) graphene (μc = 0.58 eV) cover layer.

Fig. 5
Fig. 5

Transmission (Left) and Reflection (Right) intensity transfer function of a Silicon graphene Bragg grating with N = 3 Λ = 1250.4 nm, L = 1500 μm, μco = 0.52 eV, neffo = 1.8591, T = 300°K and 1 / Γ = 5 x 10 13 sec.

Fig. 6
Fig. 6

Central operating wavelength λD and the grating bandwidth evolution versus the chemical potential of a Silicon graphene Bragg grating with Λ = 1250.4 nm, L = 1500 μm, μco = 0.52 eV, neffo = 1.8591, T = 300°K and 1 / Γ = 5 x 10 13 sec.

Fig. 7
Fig. 7

Transmission (left) and Reflection (right) intensity transfer function of a Silicon graphene, Gaussian-apodized, Bragg grating with N = 3, Λ = 1250.48 nm, L = 1500 μm, μc = 0.62 eV, T = 300°K and 1 / Γ = 5 x 10 13 sec. taking the Gaussian window coefficient G as a parameter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω , μ c ) = σ intra ( ω , μ c ) + σ inter ( ω , μ c )
σ intra ( ω , μ c ) = i e 2 π 2 ( ω + i 2 Γ ) [ μ c k B T + 2 ln ( e ( μ c / k B T ) + 1 ) ]
σ inter ( ω , μ c ) i e 2 4 π ln ( 2 | μ c | ( ω 2 i Γ ) 2 | μ c | + ( ω 2 i Γ ) )
Γ = e v F 2 μ μ c
ε g ( ω , μ c ) = 1 + i σ ( ω , μ c ) ω ε o Δ
| μ c ( V g ) | = v F π | η ( V g V o ) |
λ D ( μ c , N ) = 2 n ¯ e f f ( μ c ) Λ / N n ¯ e f f ( μ c ) = n e f f o + n e f f ( μ c ) 2
Δ λ ( μ c , N ) λ D ( μ c , N ) = Δ n e f f ( μ c , N ) n ¯ e f f ( μ c ) 1 + ( λ D ( μ c , N ) Δ n e f f ( μ c , N ) L ) 2
Δ n e f f ( μ c , z ) = Δ n e f f ( μ c , L / 2 ) exp [ G 2 ( z L 2 ) 2 ]

Metrics