Abstract

The distributed-coupling-coefficient and distributed-coupling-coefficient corrugation-pitch-modulated DFB lasers are experimentally demonstrated. The proposed lasers maintain good side mode suppression ratio over 50dBfrom 2.5 times to 12.5 times threshold current. The grating profiles of varying longitudinal parameters are equivalently obtained by specially designed sampled Bragg gratings and fabricated by conventional holographic exposure and μm-level photolithography.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. 30(11), 2467–2476 (1994).
    [CrossRef]
  2. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
    [CrossRef]
  3. T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. 16(3), 419–427 (1998).
    [CrossRef]
  4. M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
    [CrossRef]
  5. G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
    [CrossRef]
  6. B. S. K. Lo, H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. 13(2), 200–212 (1995).
    [CrossRef]
  7. T. Fessant, “Threshold and above-threshold analysis of corrugation-pitch-modulated DFB lasers with inhomogeneous coupling coefficient,” IEE Proc. Optoelectron. 144(6), 365–376 (1997).
  8. T. Fessant, “Influence of a nonuniform coupling coefficient on the static and large signal dynamic behavior of Bragg-detuned DFB lasers,” J. Lightwave Technol. 16(3), 419–427 (1998).
    [CrossRef]
  9. A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
    [CrossRef]
  10. S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
    [CrossRef]
  11. J. Li, H. Wang, X. Chen, Z. Yin, Y. Shi, Y. Lu, Y. Dai, H. Zhu, “Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 17(7), 5240–5245 (2009).
    [CrossRef] [PubMed]
  12. Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
    [CrossRef]
  13. V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
    [CrossRef]
  14. S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
    [CrossRef]
  15. T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. 27(11), 2404–2414 (1991).
    [CrossRef]
  16. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
    [CrossRef]
  17. X. Li, W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. 31(10), 1846–1855 (1995).

2013

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[CrossRef]

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

2012

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

2009

1998

1997

T. Fessant, “Threshold and above-threshold analysis of corrugation-pitch-modulated DFB lasers with inhomogeneous coupling coefficient,” IEE Proc. Optoelectron. 144(6), 365–376 (1997).

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

1995

X. Li, W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. 31(10), 1846–1855 (1995).

B. S. K. Lo, H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. 13(2), 200–212 (1995).
[CrossRef]

1994

P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. 30(11), 2467–2476 (1994).
[CrossRef]

1993

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

1992

A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
[CrossRef]

1991

T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. 27(11), 2404–2414 (1991).
[CrossRef]

1989

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
[CrossRef]

M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
[CrossRef]

1988

G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[CrossRef]

Aimez, V.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

Anthony, P. J.

G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[CrossRef]

Armistead, C. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
[CrossRef]

Beaudin, G.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

Bouley, J. C.

A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
[CrossRef]

Charil, J.

A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
[CrossRef]

Chen, X.

Chinone, N.

M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
[CrossRef]

Chuang, S. L.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

Collar, A. J.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
[CrossRef]

Correc, P.

P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. 30(11), 2467–2476 (1994).
[CrossRef]

Dai, Y.

Fang, W.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

Fessant, T.

Gao, L.

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

Geusic, J. E.

G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[CrossRef]

Ghafouri-Shiraz, H.

B. S. K. Lo, H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. 13(2), 200–212 (1995).
[CrossRef]

Giguere, A.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

Guo, R.

Harada, T.

M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
[CrossRef]

Hsu, A.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

Huang, W.-P.

X. Li, W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. 31(10), 1846–1855 (1995).

Kirk, A. G.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

Kjellberg, T.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

Klinga, T.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

LeDrogoff, B.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

Li, J.

Li, L.

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[CrossRef]

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

Li, R.

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

Li, S.

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[CrossRef]

Li, W.

Li, X.

X. Li, W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. 31(10), 1846–1855 (1995).

Liu, R.

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, R. Liu, W. Li, L. Lu, S. Tang, Y. Zhou, J. Li, X. Chen, “Study of the multiwavelength DFB semiconductor laser array based on the reconstruction-equivalent-chirptechnique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[CrossRef]

Lo, B. S. K.

B. S. K. Lo, H. Ghafouri-Shiraz, “Spectral characteristics of distributed feedback laser diodes with distributed coupling coefficient,” J. Lightwave Technol. 13(2), 200–212 (1995).
[CrossRef]

Lu, L.

Lu, Y.

Makino, T.

T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. 27(11), 2404–2414 (1991).
[CrossRef]

Nilsson, S.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

Okai, M.

M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
[CrossRef]

Ougazzaden, A.

A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
[CrossRef]

Schatz, R.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

Sergent, A. M.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

Shi, Y.

Streubel, K.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

Taira, H.

M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
[CrossRef]

Talneau, A.

A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
[CrossRef]

Tanbun-Ek, T.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

Tang, S.

Thompson, G. H. B.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
[CrossRef]

Veerasubramanian, V.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

Wallin, J.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

Wang, H.

Whiteaway, J. E. A.

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
[CrossRef]

Yin, Z.

Zhang, T.

Zhou, Y.

Zhu, H.

Appl. Phys. Lett.

G. P. Agrawal, J. E. Geusic, P. J. Anthony, “Distributed feedback lasers with multiple phase-shift regions,” Appl. Phys. Lett. 53(3), 178–179 (1988).
[CrossRef]

Electron. Lett.

A. Talneau, J. Charil, A. Ougazzaden, J. C. Bouley, “High power operation of phase-shifted DFB lasers with amplitude modulated coupling coefficient,” Electron. Lett. 28(15), 1395–1396 (1992).
[CrossRef]

IEE Proc. Optoelectron.

T. Fessant, “Threshold and above-threshold analysis of corrugation-pitch-modulated DFB lasers with inhomogeneous coupling coefficient,” IEE Proc. Optoelectron. 144(6), 365–376 (1997).

IEEE J. Quantum Electron.

P. Correc, “Stability of phase-shifted DFB lasers against hole burning,” IEEE J. Quantum Electron. 30(11), 2467–2476 (1994).
[CrossRef]

J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar, C. J. Armistead, “The design assessment of λ/4 phase-shifted DFB laser structures,” IEEE J. Quantum Electron. 25(6), 1261–1279 (1989).
[CrossRef]

T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multisection DFB semiconductorlasers,” IEEE J. Quantum Electron. 27(11), 2404–2414 (1991).
[CrossRef]

X. Li, W.-P. Huang, “Simulation of DFB semiconductor lasers incorporating thermal effects,” IEEE J. Quantum Electron. 31(10), 1846–1855 (1995).

IEEE J. Sel. Top. Quantum Electron.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial holeburning,” IEEE J. Sel. Top. Quantum Electron. 3(2), 547–554 (1997).
[CrossRef]

IEEE Photonics J.

V. Veerasubramanian, G. Beaudin, A. Giguere, B. LeDrogoff, V. Aimez, A. G. Kirk, “Design and demonstration of apodizedcomb filters on SOI,” IEEE Photonics J. 4(4), 1133–1139 (2012).
[CrossRef]

IEEE Photonics Technol. Lett.

S. Li, R. Li, L. Li, R. Liu, L. Gao, X. Chen, “Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique,” IEEE Photonics Technol. Lett. 25(3), 299–302 (2013).
[CrossRef]

M. Okai, N. Chinone, H. Taira, T. Harada, “Corrugation-pitch-modulated phase-shifted DFB laser,” IEEE Photonics Technol. Lett. 1(8), 200–201 (1989).
[CrossRef]

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, R. Schatz, “DFB laser with nonuniform coupling coefficient realized by double-layer buried grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematics of grating profile (a) real DCC, (b) equivalent DCC, (c) equivalent DCC-CPM(L: length,Λ0: seed uniform grating pitch, P: sampling period, γ: duty cycle of the sampling structure, and κ: coupling coefficient. The subscript c and s denote the parameters in the center and side section, respectively).

Fig. 2
Fig. 2

The simulated static characteristics of the equivalent DCC and DCC-CPM DFB lasers: (a) light intensity distributions, (b) gain margins under different injection currents, (c) (d) the corresponding spectra.

Fig. 3
Fig. 3

(a) Schematic diagram of the lasers, (b) the SEM image of the sampled gratings.

Fig. 4
Fig. 4

The measured L-I curve of the DCC and DCC-CPM DFB laser at different ambient temperatures.

Fig. 5
Fig. 5

The measured lasing spectra at 25 °C (a) DCC laser at 20mA, (b) DCC-CPM laser at 20mA, (c) DCC laser at 200mA, (d) DCC-CPM laser at 200mA (inset: the optical spectrum in wide wavelength range under the same conditions).

Fig. 6
Fig. 6

The measured lasing wavelengths and SMSRs of the DCC and DCC-CPM DFB laser when injection current changes from 20mA to 200mA.

Fig. 7
Fig. 7

The measured spectra (a) DCC and DCC-CPM DFB laser at 100mA with different ambient temperatures, (b) the corresponding SMSRs, (c) DCC DFB laser at 180mA (~45°C), (d) DCC-CPM DFB laser at 190mA (~45°C).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ m = κ 0 sin(πmγ) mπ exp(iπmγ)
P={ P s out of the PAR P c = P s +θ P s 2 /2πmLin the PAR

Metrics