Abstract

A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro lens fabrication by means of femtosecond two photon photopolymerization

Rui Guo, Shizhou Xiao, Xiaomin Zhai, Jiawen Li, Andong Xia, and Wenhao Huang
Opt. Express 14(2) 810-816 (2006)

Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography

Teruhiro Shiono, Kentaro Setsune, Osamu Yamazaki, and Kiyotaka Wasa
Appl. Opt. 26(3) 587-591 (1987)

Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator

Shaun D. Gittard, Alexander Nguyen, Kotaro Obata, Anastasia Koroleva, Roger J. Narayan, and Boris N. Chichkov
Biomed. Opt. Express 2(11) 3167-3178 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
    [Crossref] [PubMed]
  2. G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
    [Crossref] [PubMed]
  3. K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
    [Crossref] [PubMed]
  4. X. Yang, L. Wang, and S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
    [Crossref]
  5. D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
    [Crossref]
  6. S. Kawata and H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
    [Crossref]
  7. K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
    [Crossref]
  8. S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
    [Crossref]
  9. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
    [Crossref]
  10. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
    [PubMed]
  11. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [Crossref]
  12. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [Crossref] [PubMed]
  13. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [Crossref] [PubMed]
  14. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010).
    [Crossref] [PubMed]
  15. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
    [Crossref] [PubMed]
  16. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
    [Crossref]
  17. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [Crossref] [PubMed]
  18. S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
    [Crossref] [PubMed]

2012 (1)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

2011 (2)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

S. D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R. J. Narayan, and B. N. Chichkov, “Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator,” Biomed. Opt. Express 2(11), 3167–3178 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

2008 (2)

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

2007 (1)

X. Yang, L. Wang, and S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[Crossref]

2006 (2)

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[Crossref]

2003 (1)

S. Kawata and H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[Crossref]

2001 (2)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

1995 (1)

Amako, J.

Chichkov, B. N.

Chilkoti, A.

Clark, R. L.

Coric, E.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

Deneke, C.

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Gadonas, R.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gedvilas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gittard, S. D.

Hasegawa, S.

Hayasaki, Y.

Hill, R. T.

Hnatovsky, C.

Huang, G.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

Hucknall, A.

Ishida, M.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Jenness, N. J.

Juodkazis, S.

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Kaneko, H.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Kawano, T.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Kawashima, T.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Kawata, S.

S. Kawata and H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Kim, R. H.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Kiravittaya, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Koroleva, A.

Krolikowski, W.

Lee, K.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Malinauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Matsuo, S.

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Mei, Y.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Misawa, H.

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Miura, H.

Narayan, R. J.

Nguyen, A.

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[Crossref] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Obata, K.

Park, S. H.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Raciukaitis, G.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Rode, A. V.

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sanchez, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Sawada, K.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Schmidt, O. G.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Shvedov, V. G.

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Sonehara, T.

Stankevicius, E.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Sun, H.

S. Kawata and H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[Crossref]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Takahashi, H.

Takei, K.

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Takita, A.

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Thurmer, D. J.

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

Wang, L.

X. Yang, L. Wang, and S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[Crossref]

Yang, D.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Yang, S.

X. Yang, L. Wang, and S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[Crossref]

Yang, X.

X. Yang, L. Wang, and S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

D. J. Thurmer, C. Deneke, Y. Mei, and O. G. Schmidt, “Process integration of microtubes for fluidic applications,” Appl. Phys. Lett. 89(22), 223507 (2006).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Appl. Phys., A Mater. Sci. Process. 80(4), 683–685 (2005).
[Crossref]

Appl. Surf. Sci. (1)

S. Kawata and H. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci. 208, 153–158 (2003).
[Crossref]

Biomed. Microdevices (1)

K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, and M. Ishida, “Out-of-plane microtube arrays for drug delivery--liquid flow properties and an application to the nerve block test,” Biomed. Microdevices 11(3), 539–545 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J. Micromech. Microeng. (1)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Lab Chip (1)

G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt, “Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells,” Lab Chip 9(2), 263–268 (2009).
[Crossref] [PubMed]

Mater. Lett. (1)

X. Yang, L. Wang, and S. Yang, “Facile route to fabricate large-scale silver microtubes,” Mater. Lett. 61(14-15), 2904–2907 (2007).
[Crossref]

Nano Lett. (1)

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Lett. 11(10), 4037–4042 (2011).
[Crossref] [PubMed]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Prog. Polym. Sci. (1)

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The left is the diagrammatic sketch of generation process of AFL. The smaller circle is FL. r 0 is the shift distance of FL, which is the same to the radius of FL here. r 1 is the radius of AFL. Red arrow shows the moving direction of FL. And the right is the obtained AFL.

Fig. 2
Fig. 2

Simulation results of illuminated field in sagittal plane at (a) z = 0.95f, (b) z = f, (c) z = 1.05f and (d) meridian plane containing the optical axis; (e) intensity distribution at focal plane.

Fig. 3
Fig. 3

Diagram of the laser system. H0 is a half wave plate. P0 is a Glan laserprim. AFL is loaded on SLM. A high-pass filter is placed at the focus of AFL to block the center beam.

Fig. 4
Fig. 4

SEM images of tube array fabricated using the described method with a 100x objective. (a) Arrays captured at 45°; (b) arrays captured at top view; (c) SEM image of an individual structure of array; (d) top view of another individual structure. Scale bars are 40μm in (a), (b) and 10μm in (c), (d).

Fig. 5
Fig. 5

SEM images of a 3D tube pattern fabricated using AFL.

Fig. 6
Fig. 6

SEM images of tube array with various radius. (a) Image captured at 45°; (b) image captured at 0°; (c) the AFLs used in fabricating tube with different radius. Scale bars are 20μm.

Tables (1)

Tables Icon

Table 1 Simulation results of 5 AFLs with different 0 order zone width

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E( x,y,z )= exp( ikz ) iλz E( x 1 , y 1 )exp{ ik 2z [ ( x- x 1 ) 2 + ( y- y 1 ) 2 ] } d x 1 d y 1

Metrics