Abstract

This study extended the transmission distance of a 100-GHz DD-OFDM-RoF system through the reduction of chromatic dispersion-induced phase noise. The implementation of a pilot-aided phase noise suppression (PPNS) scheme enabled the transmission of distance-insensitive 16.97-Gbps QPSK OFDM over 0~150-km fiber and 2-m air transmission via a DFB laser with linewidth of 1~10-MHz. We applied a bit-loading algorithm in conjunction with PPNS to maximize spectral efficiency, resulting in a 93% improvement in the data rate from 11.53 to 22.27 Gbps at a fiber transmission of 150 km.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. FCC, “Code of Federal Regulation, title 47 Telecommunications, Part 15,” FCC 47 CFR 15.255, 2008.
  2. C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
    [CrossRef]
  3. A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, K. Kitayama, “40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express 19(26), B56–B63 (2011).
    [CrossRef] [PubMed]
  4. X. Pang, A. Caballero, A. Dogadaev, V. Arlunno, R. Borkowski, J. S. Pedersen, L. Deng, F. Karinou, F. Roubeau, D. Zibar, X. Yu, I. T. Monroy, “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express 19(25), 24944–24949 (2011).
    [CrossRef] [PubMed]
  5. H. T. Huang, C. T. Lin, C. H. Ho, W. L. Liang, C. C. Wei, Y. H. Cheng, S. Chi, “High spectral efficient W-band OFDM-RoF system with direct-detection by two cascaded single-drive MZMs,” Opt. Express 21(14), 16615–16620 (2013).
    [CrossRef] [PubMed]
  6. W. R. Peng, “Analysis of laser phase noise effect in direct- detection optical OFDM transmission,” J. Lightwave Technol. 28(17), 2526–2536 (2010).
    [CrossRef]
  7. R. A. Casas, S. L. Biracree, A. E. Youtz, “Time domain phase noise correction for OFDM signals,” IEEE Trans. Broadcast. 48(3), 230–236 (2002).
    [CrossRef]
  8. S. Wu, P. Liu, Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
    [CrossRef]
  9. W. R. Peng, T. Tsuritani, I. Morita, “Simple carrier recovery approach for RF-pilot-assisted PDM-CO-OFDM systems,” J. Lightwave Technol. 31(15), 2555–2564 (2013).
    [CrossRef]
  10. C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).
  11. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” Optical Fiber Communication Conference. Optical Society of America, PDP15, (2007).

2013 (2)

2012 (1)

C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).

2011 (2)

2010 (1)

2008 (1)

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

2006 (1)

S. Wu, P. Liu, Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

2002 (1)

R. A. Casas, S. L. Biracree, A. E. Youtz, “Time domain phase noise correction for OFDM signals,” IEEE Trans. Broadcast. 48(3), 230–236 (2002).
[CrossRef]

Arlunno, V.

Bar-Ness, Y.

S. Wu, P. Liu, Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Biracree, S. L.

R. A. Casas, S. L. Biracree, A. E. Youtz, “Time domain phase noise correction for OFDM signals,” IEEE Trans. Broadcast. 48(3), 230–236 (2002).
[CrossRef]

Borkowski, R.

Caballero, A.

Casas, R. A.

R. A. Casas, S. L. Biracree, A. E. Youtz, “Time domain phase noise correction for OFDM signals,” IEEE Trans. Broadcast. 48(3), 230–236 (2002).
[CrossRef]

Chao, M. I.

C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).

Chen, J.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Cheng, Y. H.

Chi, S.

H. T. Huang, C. T. Lin, C. H. Ho, W. L. Liang, C. C. Wei, Y. H. Cheng, S. Chi, “High spectral efficient W-band OFDM-RoF system with direct-detection by two cascaded single-drive MZMs,” Opt. Express 21(14), 16615–16620 (2013).
[CrossRef] [PubMed]

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Dai, S. P.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Deng, L.

Dogadaev, A.

Ho, C. H.

Hosako, I.

Huang, H. T.

Inagaki, K.

Jiang, W. J.

C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).

Kanno, A.

Karinou, F.

Kawanishi, T.

Kitayama, K.

Kuri, T.

Liang, W. L.

Lin, C. T.

H. T. Huang, C. T. Lin, C. H. Ho, W. L. Liang, C. C. Wei, Y. H. Cheng, S. Chi, “High spectral efficient W-band OFDM-RoF system with direct-detection by two cascaded single-drive MZMs,” Opt. Express 21(14), 16615–16620 (2013).
[CrossRef] [PubMed]

C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Liu, P.

S. Wu, P. Liu, Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Monroy, I. T.

Morita, I.

Morohashi, I.

Pang, X.

Pedersen, J. S.

Peng, P. C.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Peng, W. R.

Roubeau, F.

Sakamoto, T.

Shih, P. T.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Tsuritani, T.

Wei, C. C.

H. T. Huang, C. T. Lin, C. H. Ho, W. L. Liang, C. C. Wei, Y. H. Cheng, S. Chi, “High spectral efficient W-band OFDM-RoF system with direct-detection by two cascaded single-drive MZMs,” Opt. Express 21(14), 16615–16620 (2013).
[CrossRef] [PubMed]

C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).

Wu, S.

S. Wu, P. Liu, Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

Yoshida, Y.

Youtz, A. E.

R. A. Casas, S. L. Biracree, A. E. Youtz, “Time domain phase noise correction for OFDM signals,” IEEE Trans. Broadcast. 48(3), 230–236 (2002).
[CrossRef]

Yu, X.

Zibar, D.

IEEE Photon. Technol. Lett. (2)

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

C. C. Wei, C. T. Lin, M. I. Chao, W. J. Jiang, “Adaptively modulated OFDM RoF signals at 60 GHz over long-reach 100-km transmission systems employing phase noise suppression,” IEEE Photon. Technol. Lett. 24, 49–51 (2012).

IEEE Trans. Broadcast. (1)

R. A. Casas, S. L. Biracree, A. E. Youtz, “Time domain phase noise correction for OFDM signals,” IEEE Trans. Broadcast. 48(3), 230–236 (2002).
[CrossRef]

IEEE Trans. Wirel. Comm. (1)

S. Wu, P. Liu, Y. Bar-Ness, “Phase noise estimation and mitigation for OFDM systems,” IEEE Trans. Wirel. Comm. 5(12), 3616–3625 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (2)

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation,” Optical Fiber Communication Conference. Optical Society of America, PDP15, (2007).

FCC, “Code of Federal Regulation, title 47 Telecommunications, Part 15,” FCC 47 CFR 15.255, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Depiction of (a) the origin of the CD-induced PN and (b) PN elimination by PPNS.

Fig. 2
Fig. 2

Experimental setup of 100-GHz DD-OFDM-RoF system.

Fig. 3
Fig. 3

PSPR optimization with 10.3-MHz linewidth over 150-km fiber transmission.

Fig. 4
Fig. 4

BER curves over 150-km fiber with 5.5-MHz and 10.3-MHz linewidth.

Fig. 5
Fig. 5

The sensitivities with (a) various fiber distances and (b) sensitivities with various laser linewidth.

Fig. 6
Fig. 6

Subcarrier number of each modulation format with and without PPNS over 150-km fiber transmission with (a) 5.5-MHz and (b) 10.3-MHz linewidth.

Fig. 7
Fig. 7

(a) Data rate and (b) data rate improvement by PPNS with various laser linewidth employing bit-loading algorithm.

Metrics