Abstract

We report the implementation of the XOR and XNOR logical operations using an electro-optic circuit, which is fabricated by CMOS-compatible process in the silicon-on-insulator (SOI) platform. The circuit consists of two cascaded add-drop microring resonators (MRRs), which are modulated through electric-field-induced carrier depletion in reverse biased pn junctions embedded in the ring waveguides. The resonance wavelength mismatch between the two nominally identical MRRs caused by fabrication errors is compensated by thermal tuning. Simultaneous bitwise XOR and XNOR operations of the two electrical modulating signals at the speed of 12.5 Gb/s are demonstrated. And 20 Gb/s XOR operation at one output port of the circuit is achieved. We explain the phenomena that one half of the resonance regions of the device are much more sensitive to the round-trip phase shift in the ring waveguides than the other half resonance regions. Characteristic graphs with logarithmic phase coordinate are proposed to analyze the sensitivity of the demonstrated circuit, as well as several typical integrated optical structures. It is found that our circuit with arbitrary chosen parameters has similar sensitivity to MRRs under the critical coupling.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
    [CrossRef]
  2. R. Clavero, J. M. Martínez, F. Ramos, J. Martí, “All-optical packet routing scheme for optical label-swapping networks,” Opt. Express 12(18), 4326–4332 (2004).
    [CrossRef] [PubMed]
  3. A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
    [CrossRef]
  4. J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013).
    [CrossRef]
  5. M. P. Fok, P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009).
    [CrossRef] [PubMed]
  6. S. H. Jeon, S. K. Gil, “Optical implementation of triple DES algorithm based on dual XOR logic operations,” J. Opt. Soc. Korea 17(5), 362–370 (2013).
    [CrossRef]
  7. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [CrossRef]
  8. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [CrossRef]
  9. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [CrossRef]
  10. N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
    [CrossRef]
  11. S. Kumar, A. E. Willner, “Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA,” Opt. Express 14(12), 5092–5097 (2006).
    [CrossRef] [PubMed]
  12. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, J. Jaques, C. R. Giles, “All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers,” Opt. Express 17(21), 19062–19066 (2009).
    [CrossRef] [PubMed]
  13. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [CrossRef]
  14. J. Wang, J. Sun, X. Zhang, D. Huang, M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33(13), 1419–1421 (2008).
    [CrossRef] [PubMed]
  15. A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
    [CrossRef] [PubMed]
  16. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
    [CrossRef]
  17. J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010).
    [CrossRef]
  18. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express 19(21), 20364–20371 (2011).
    [CrossRef] [PubMed]
  19. C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, B. J. Eggleton, “Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide,” Opt. Express 19(21), 20681–20690 (2011).
    [CrossRef] [PubMed]
  20. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
    [CrossRef] [PubMed]
  21. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
    [CrossRef]
  22. J. Hardy, J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
    [CrossRef] [PubMed]
  23. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
    [CrossRef]
  24. L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
    [CrossRef] [PubMed]
  25. L. Zhang, R. Q. Ji, Y. H. Tian, L. Yang, P. Zhou, Y. Y. Lu, W. W. Zhu, Y. L. Liu, L. X. Jia, Q. Fang, M. B. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
    [CrossRef] [PubMed]
  26. C. Y. Qiu, X. Ye, R. Soref, L. Yang, Q. F. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
    [CrossRef] [PubMed]
  27. Y. Tian, L. Zhang, L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express 20(15), 16794–16800 (2012).
    [CrossRef]
  28. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
    [CrossRef] [PubMed]
  29. R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron. 2011, 627802 (2011).
    [CrossRef]
  30. Q. F. Xu, R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [CrossRef] [PubMed]
  31. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
    [CrossRef] [PubMed]
  32. Q. F. Xu, V. R. Almeida, R. R. Panepucci, M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  33. J. Heebner, R. Grover, and T. Ibrahim, Optical microresonators: theory, fabrication, and applications (Springer-Verlag, London, 2008), Chap. 3.
  34. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  35. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
    [CrossRef] [PubMed]
  36. H. X. Yi, D. S. Citrin, Z. P. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
    [CrossRef] [PubMed]

2013 (3)

J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013).
[CrossRef]

S. H. Jeon, S. K. Gil, “Optical implementation of triple DES algorithm based on dual XOR logic operations,” J. Opt. Soc. Korea 17(5), 362–370 (2013).
[CrossRef]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

2012 (5)

2011 (6)

2010 (5)

2009 (2)

2008 (3)

2007 (2)

2006 (3)

2005 (1)

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

2004 (2)

2001 (1)

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

2000 (1)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

1999 (1)

A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
[CrossRef]

Almeida, V. R.

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Baets, R.

Bakhtiari, Z.

Bartolozzi, I.

Bienstman, P.

Blow, K. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
[CrossRef]

Bogoni, A.

Buhl, L.

Cabot, S.

Cappuzzo, M.

Chan, C. K.

N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[CrossRef]

Chan, K.

N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[CrossRef]

Chattopadhyay, T.

J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013).
[CrossRef]

Cheben, P.

Chen, H.

Chen, L. K.

N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[CrossRef]

Chen, L. R.

J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010).
[CrossRef]

Chen, P.

Chen, Y. F.

Choi, D.-Y.

Christen, L.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Citrin, D. S.

Clavero, R.

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Coquelin, A.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Corcoran, B.

Dagens, B.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

De Vos, K.

Debbarma, S. K.

Delâge, A.

Deng, N.

N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[CrossRef]

Densmore, A.

Ding, J.

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Dinu, M.

Dutta, N.

Eggleton, B. J.

Fang, Q.

Fejer, M. M.

Fjelde, T.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Fok, M. P.

Gaborit, F.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Gil, S. K.

Giles, C. R.

Gomez, L. T.

Guillemot, I.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Guo-Qiang Lo, P.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Hardy, J.

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Huang, D.

Husko, C.

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Janz, S.

Jaques, J.

Jeon, S. H.

Ji, R.

Ji, R. Q.

Jia, L. X.

Jiang, Z. Y.

Kang, I.

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Kelly, A. E.

A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
[CrossRef]

Kloch, A.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Krauss, T. F.

Kumar, S.

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Langrock, C.

Lapointe, J.

Li, F.

Li, J.

Lim, A. E.-J.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Lipson, M.

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Liu, Y. L.

Lopinski, G.

Lu, Y.

Lu, Y. Y.

Luo, T.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[CrossRef] [PubMed]

Ma, R.

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[CrossRef] [PubMed]

Manning, R. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
[CrossRef]

Martí, J.

Martínez, J. M.

McGeehan, J. E.

McKinnon, R.

Min, R.

Mischki, T.

Moss, D. J.

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Nuccio, S.

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Pan, Z.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Panepucci, R. R.

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[CrossRef] [PubMed]

Patel, S. S.

Pelusi, M.

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[CrossRef] [PubMed]

Piccirilli, A.

Poingt, F.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Post, E.

Poustie, A. J.

A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
[CrossRef]

Prucnal, P. R.

Qiu, C. Y.

Qiu, J.

J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010).
[CrossRef]

Rakshit, J. K.

J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013).
[CrossRef]

Ramos, F.

Rasras, M.

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Renaud, M.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Rochette, M.

J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010).
[CrossRef]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Roy, J. N.

J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013).
[CrossRef]

Schacht, E.

Schmid, J. H.

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

Schröder, J.

Shamir, J.

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Soref, R.

Soref, R. A.

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

Sun, J.

Sun, K.

J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010).
[CrossRef]

Tian, Y.

Tian, Y. H.

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Vo, T. D.

Waldron, P.

Wang, J.

Wang, Y.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Willner, A. E.

Willner, A. W.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Wolfson, D.

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

Wu, X.

Xu, D. X.

Xu, D.-X.

Xu, Q. F.

Yan, L.-S.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Yang, L.

Ye, X.

Yi, H. X.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yu, C.

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

Yu, M.

Yu, M. B.

Zhang, L.

Zhang, X.

Zhou, P.

Zhou, Z. P.

Zhu, W.

Zhu, W. W.

Adv. Optoelectron. (1)

R. Soref, “Reconfigurable integrated optoelectronics,” Adv. Optoelectron. 2011, 627802 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

N. Deng, K. Chan, C. K. Chan, L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Fjelde, A. Kloch, D. Wolfson, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, “Novel scheme for simple label-swapping employing XOR logic in an integrated interferometric wavelength converter,” IEEE Photon. Technol. Lett. 13(7), 750–752 (2001).
[CrossRef]

C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. W. Willner, “All-optical XOR gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17(6), 1232–1234 (2005).
[CrossRef]

J. Qiu, K. Sun, M. Rochette, L. R. Chen, “Reconfigurable all-optical multi-logic gate (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber,” IEEE Photon. Technol. Lett. 22(16), 1199–1201 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Korea (1)

Laser Photon. Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6(1), 97–114 (2012).
[CrossRef]

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Opt. Commun. (2)

A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “All-optical parity checker with bit-differential delay,” Opt. Commun. 162(1-3), 37–43 (1999).
[CrossRef]

J. K. Rakshit, J. N. Roy, T. Chattopadhyay, “Design of micro-ring resonator based all-optical parity generator and checker circuit,” Opt. Commun. 303, 30–37 (2013).
[CrossRef]

Opt. Express (14)

R. Clavero, J. M. Martínez, F. Ramos, J. Martí, “All-optical packet routing scheme for optical label-swapping networks,” Opt. Express 12(18), 4326–4332 (2004).
[CrossRef] [PubMed]

S. Kumar, A. E. Willner, “Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA,” Opt. Express 14(12), 5092–5097 (2006).
[CrossRef] [PubMed]

I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, J. Jaques, C. R. Giles, “All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers,” Opt. Express 17(21), 19062–19066 (2009).
[CrossRef] [PubMed]

F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express 19(21), 20364–20371 (2011).
[CrossRef] [PubMed]

C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, B. J. Eggleton, “Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide,” Opt. Express 19(21), 20681–20690 (2011).
[CrossRef] [PubMed]

J. Hardy, J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
[CrossRef] [PubMed]

L. Zhang, R. Q. Ji, Y. H. Tian, L. Yang, P. Zhou, Y. Y. Lu, W. W. Zhu, Y. L. Liu, L. X. Jia, Q. Fang, M. B. Yu, “Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators,” Opt. Express 19(7), 6524–6540 (2011).
[CrossRef] [PubMed]

Q. F. Xu, R. A. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
[CrossRef] [PubMed]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
[CrossRef] [PubMed]

Y. Tian, L. Zhang, L. Yang, “Electro-optic directed AND/NAND logic circuit based on two parallel microring resonators,” Opt. Express 20(15), 16794–16800 (2012).
[CrossRef]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
[CrossRef] [PubMed]

H. X. Yi, D. S. Citrin, Z. P. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express 18(3), 2967–2972 (2010).
[CrossRef] [PubMed]

Opt. Lett. (7)

L. Zhang, R. Q. Ji, L. X. Jia, L. Yang, P. Zhou, Y. H. Tian, P. Chen, Y. Y. Lu, Z. Y. Jiang, Y. L. Liu, Q. Fang, M. B. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
[CrossRef] [PubMed]

Q. F. Xu, V. R. Almeida, R. R. Panepucci, M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
[CrossRef] [PubMed]

C. Y. Qiu, X. Ye, R. Soref, L. Yang, Q. F. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37(19), 3942–3944 (2012).
[CrossRef] [PubMed]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D.-Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33(13), 1419–1421 (2008).
[CrossRef] [PubMed]

A. Bogoni, X. Wu, Z. Bakhtiari, S. Nuccio, A. E. Willner, “640 Gbits/s photonic logic gates,” Opt. Lett. 35(23), 3955–3957 (2010).
[CrossRef] [PubMed]

M. P. Fok, P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009).
[CrossRef] [PubMed]

Opt. Photon. News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, M. Hochberg, “The road to affordable, large-scale silicon photonics,” Opt. Photon. News 24(9), 32–39 (2013).
[CrossRef]

Other (1)

J. Heebner, R. Grover, and T. Ibrahim, Optical microresonators: theory, fabrication, and applications (Springer-Verlag, London, 2008), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

(a) Schematic and (b) micrograph of the XOR/XNOR directed logic circuit based on two cascaded carrier-depletion microring resonators (CW: continuous wave, MRR: microring resonator, EPT: electrical pulse train, OPT: optical pulse train).

Fig. 2
Fig. 2

Process flow of the device: (a) and (b) etching of the top Si layer by 150 nm and 70 nm, respectively, (c) and (d) p- and n-doping and through boron and phosphorus implantation, (e) and (f) p+- and n+-doping and through boron and phosphorus implantation, (g) deposition and etching of the TiN layer to form the microheater, (h) and (i) etching of the SiO2 layer to form the via holes to the PN diodes and microheaters, (j) deposition and etching of the Al layer to form the wires and pads, (k) deep etching to form the end-face of the spot size converters.

Fig. 3
Fig. 3

Response spectra obtained at the through and drop ports of the fabricated device with MRR1 being tuned by a heating voltage of 2.04 V to make it resonate at the same wavelength as MRR2 at the third resonance region.

Fig. 4
Fig. 4

Spectra obtained at (a, b) the through port and (c, d) the drop port of the device. The left two figures are the responses of MRR1, which is thermally tuned to be resonant around 1552.4 nm. The right two figures are the responses of MRR2, which is resonant around 1550.6 nm.

Fig. 5
Fig. 5

Response spectra obtained at (a-d) the through port and (e-h) the drop port of the device. Voltages applied to the two PN diodes are both 0 V in (a) and (e), 4 V and 0 V in (b) and (f), 0 V and 4 V in (c) and (g), and both 4 V in (d) and (h). The dashed arrow indicates the location of the working wavelength. In all cases, MRR1 has a heating voltage of 2.04 V.

Fig. 6
Fig. 6

Typical experimental results when two 5 Gb/s electrical signals are applied to the two MRRs. (a) Signals applied to MRR1 with the repeated pattern of ‘00100101’. (b) Signals applied to MRR2 with the repeated pattern of ‘01001111’. (c) XOR operation result with the repeated pattern of ‘01101010’ at the drop port. (d) XNOR operation result with the repeated pattern of ‘10010101’at the through port.

Fig. 7
Fig. 7

Dynamic operation results of the device at varying speeds. (a) and (b) 1 Gb/s signals applied to MRR1 and MRR2, respectively. (c) and (d) 1 Gb/s XOR and XNOR operation results, respectively. (e) and (f) 5 Gb/s XOR and XNOR operation results, respectively. (g) and (h) 12.5 Gb/s XOR and XNOR operation results, respectively. (i) 20 Gb/s XOR operation result.

Fig. 8
Fig. 8

Transfer matrix model of the circuit (Z1~Z4: coupling regions, S1~S2: connecting waveguides, R1~R2: ring waveguides). θ1 and θ2 are round-trip phase shifts in the MRR1 and MRR2. θs1 and θs2 are the phase shifts of the connecting waveguides of S1 and S2.

Fig. 9
Fig. 9

The response spectra at the drop port under different reverse biases. (a) The second resonance region (non-degenerate). (b) The third resonance region (degenerate). The legends in the figures show the reverse voltages applied to MRR1 and MRR2, respectively.

Fig. 10
Fig. 10

The sensitivities of the output at the drop port with different parity of the resonance order. (a) The resonance order m = 98, and p = 0. (b) The resonance order m = 99, and p = 0.

Fig. 11
Fig. 11

The sensitivities of the output at the drop port with different parity of the resonance order. (a) The resonance order m = 98, and p = 0. (b) The resonance order m = 99, and p = 0. In the calculation, the cross-coupling coefficient k and the attenuation factor α are 0.2 and 20 dB/cm, respectively.

Fig. 12
Fig. 12

Sensitivity diagram of all-pass MRR with the attenuation factor varying from 3 dB/cm to 50 dB/cm. For all the cases, the cross-coupling coefficient k equals to 0.2. Critical coupling condition is met when the attenuation factor equals to 28.22 dB/cm (α = t = 0.9798).

Fig. 13
Fig. 13

Sensitivity diagrams of add-drop MRR at (a) the through port, and (b) the drop port, with the attenuation factor in the ring waveguide varying from 3 dB/cm to 50 dB/cm. For all the cases, the cross-coupling coefficients k1 and k2 equal to 0.2 (t1 = t2 = 0.9798).

Fig. 14
Fig. 14

Sensitivity diagrams of add-drop MRR at (a) the through port, and (b) the drop port, when the critical coupling condition is satisfied. The cross-coupling coefficient k1 varies from 0.2 to 0.4, and the attenuation factor takes the values of 3 dB/cm, 10 dB/cm and 20 dB/cm (corresponding to α = 0.9978, 0.9928, and 0.9856 for ring waveguide with the radius of 10 μm). The cross-coupling coefficient and the attenuation factor are shown in the legends of the figures, respectively. When k1 changes, k2 is adjusted to meet the critical coupling condition.

Fig. 15
Fig. 15

Sensitivity diagrams of MZI in (a) linear coordinate, and (b) logarithmic coordinate. The length of one arm of the MZI is fixed to be 1000 μm, with the length of the other arm varying from 1000 μm to 200 μm with an interval of 200 μm. The legends in the figures show the length differences between the two arms. The attenuation factors in the two arms are both 20 dB/cm. The beam splitting and combining are assumed to be lossless.

Tables (1)

Tables Icon

Table 1 Relationships between Logical Operations, Applied Voltages, Resonance Statuses of MRRs, and Logical Operation Outputs

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E drop = E p3 = t·(1α·exp(j· θ 1 )) 1α· t 2 ·exp(j· θ 1 ) × k 2 · α 3/4 ·exp(j·3/4 · θ 2 ) 1α· t 2 ·exp(j· θ 2 ) ×exp(j· θ s1 ) + k 2 · α 1/4 ·exp(j·1/4 · θ 1 ) 1α· t 2 ·exp(j· θ 1 ) × t·(1α·exp(j· θ 2 )) 1α· t 2 ·exp(j· θ 2 ) ×exp(j· θ s2 )
Δ φ p3 =arctan[ α·sin( θ 1 ) 1α·cos( θ 1 ) ]arctan[ α·sin( θ 2 ) 1α·cos( θ 2 ) ]+[ 3 4 · θ 2 1 4 · θ 1 ]+[ θ s2 θ s1 ]
Δ φ p3 =m×(p+1)×π
E through = tα·exp(j·θ) 1α·t·exp(j·θ)
E through = t 1 α· t 2 exp(j·θ) 1α· t 1 · t 2 ·exp(j·θ) ; E drop = α 1/2 · k 1 · k 2 exp(j·θ/2 ) 1α· t 1 · t 2 ·exp(j·θ) .
E out =1/4 ×( α 1 2 + α 2 2 +2· α 1 · α 2 ·cos(Δθ)).

Metrics