Abstract

By utilizing the phase change properties of vanadium dioxide (VO2), we have demonstrated the tuning of the electric and magnetic modes of split ring resonators (SRRs) simultaneously within the near IR range. The electric resonance wavelength is blue-shift about 73 nm while the magnetic resonance mode is red-shifted about 126 nm during the phase transition from insulating to metallic phases. Due to the hysteresis phenomenon of VO2 phase transition, both the electric and magnetic modes shifts are hysteretic. In addition to the frequency shift, the magnetic mode has a trend to vanish due to the fact that the metallic phase VO2 has the tendency to short the gap of SRR. We have also demonstrated the application of this active metamaterials in tunable surface-enhanced Raman scattering (SERS), for a fixed excitation laser wavelength, the Raman intensity can be altered significantly by tuning the electric mode frequency of SRR, which is accomplished by controlling the phase of VO2 with an accurate temperature control.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [CrossRef] [PubMed]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  3. N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
    [CrossRef] [PubMed]
  4. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    [CrossRef]
  5. T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
    [CrossRef] [PubMed]
  6. J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
    [CrossRef] [PubMed]
  7. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
    [CrossRef] [PubMed]
  8. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [CrossRef] [PubMed]
  9. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [CrossRef]
  10. Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012).
    [CrossRef] [PubMed]
  11. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  12. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  13. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [CrossRef]
  14. F. L. Zhang, W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express 19(2), 1563–1568 (2011).
    [CrossRef] [PubMed]
  15. V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
    [CrossRef] [PubMed]
  16. J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
    [CrossRef] [PubMed]
  17. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
    [CrossRef] [PubMed]
  18. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [CrossRef] [PubMed]
  19. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [CrossRef] [PubMed]
  20. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [CrossRef] [PubMed]
  21. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
    [CrossRef] [PubMed]
  22. M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
    [CrossRef] [PubMed]
  23. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [CrossRef] [PubMed]
  24. V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
    [CrossRef]
  25. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
    [CrossRef] [PubMed]
  26. J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
    [CrossRef]
  27. H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [CrossRef]
  28. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [CrossRef] [PubMed]
  29. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [CrossRef]
  30. K. Appavoo, R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
    [CrossRef] [PubMed]
  31. G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
    [CrossRef]
  32. X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [CrossRef] [PubMed]
  33. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [CrossRef] [PubMed]
  34. M. Decker, S. Linden, M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
    [CrossRef] [PubMed]
  35. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [CrossRef] [PubMed]
  36. K. Aydin, I. M. Pryce, H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
    [CrossRef] [PubMed]
  37. X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
    [CrossRef] [PubMed]
  38. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  39. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  40. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  41. B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
    [CrossRef] [PubMed]
  42. S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
    [CrossRef]
  43. R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004).
    [CrossRef] [PubMed]

2013

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[CrossRef] [PubMed]

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

2012

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012).
[CrossRef] [PubMed]

2011

F. L. Zhang, W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express 19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

Y. Liu, X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

K. Appavoo, R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

2010

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
[CrossRef] [PubMed]

K. Aydin, I. M. Pryce, H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[CrossRef] [PubMed]

2009

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

M. Decker, S. Linden, M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

2008

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
[CrossRef] [PubMed]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

2007

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

2006

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

2005

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

2004

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

2002

G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[CrossRef]

2001

V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1985

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1968

H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[CrossRef]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Ahrach, H. I.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Alivisatos, A. P.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004).
[CrossRef] [PubMed]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Appavoo, K.

K. Appavoo, R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

Aroca, R. F.

R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004).
[CrossRef] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Aydin, K.

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Bachelot, R.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Banin, U.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Barker, A.

H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[CrossRef]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Baudrion, A. L.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Bekenstein, Y.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Berglund, C.

H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[CrossRef]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Berthelot, J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Bouhelier, A.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Boyd, E. M.

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Brener, I.

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Chae, B.-G.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Chen, H. T.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Chen, Y. G.

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Colas-des-Francs, G.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Decker, M.

Demir, H. V.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

Dereux, A.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Dicken, M. J.

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Dodson, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

Dos Santos, D. S.

R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004).
[CrossRef] [PubMed]

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Etrich, C.

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Felidj, N.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Finot, E.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
[CrossRef]

Gabbay, A.

Ghilane, J.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

Gibaud, A.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

Giessen, H.

Gonzales, E.

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Grand, J.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Haggui, M.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

Haglund, R. F.

K. Appavoo, R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Hong, M. H.

Huang, C. J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jain, P. K.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Jun, Y. C.

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Kana Kana, J. B.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Kao, T. S.

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Kim, H. T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Kim, H.-T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Kostcheev, S.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Kuhl, J.

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Lacroix, J. C.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Lederer, F.

Lee, Y. H.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

Leroux, Y.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Li, D. H.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Li, G.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

Li, G. Y.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

Li, S.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

Li, X.

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Linden, S.

M. Decker, S. Linden, M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Ling, X. Y.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

Lippens, D.

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Luk’yanchuk, B.

Luo, X. G.

Ma, J.

Maaza, M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

Maier, S. A.

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Margueritat, J.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Martin, P.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Millo, O.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Ming, T. A.

T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Ndjaka, J. M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Ng, B.

O'Hara, J. F.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Peng, B.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[CrossRef]

Plain, J.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Polking, M. J.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Pryce, I. M.

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Qiu, K. P.

Ramesh, R.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

Randriamahazaka, H.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Reno, J. L.

Rockstuhl, C.

Royer, P.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

Shaner, E. A.

Shrekenhamer, D. B.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Smith, D. R.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Squier, J.

G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[CrossRef]

Sternbach, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Stockhausen, V.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Sun, J. B.

Sweatlock, L. A.

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Verleur, H.

H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[CrossRef]

Vignaud, G.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

Walavalkar, S.

Wang, J. F.

T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
[CrossRef] [PubMed]

Wang, S.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

Wang, S. J.

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Weeber, J. C.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Wegener, M.

M. Decker, S. Linden, M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
[CrossRef]

Wen, X.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Wiederrecht, G. P.

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Wong, L. M.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Wuttig, M.

V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
[CrossRef]

Xiao, M. D.

T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
[CrossRef] [PubMed]

Xiong, Q.

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

Xiong, Q. H.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Xu, X. L.

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[CrossRef]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Yun, S.-J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

Zentgraf, T.

Zhang, B. Z.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zhang, F. L.

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Zhang, Q.

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

Zhang, W. H.

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Y. Liu, X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

Zhao, L.

T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
[CrossRef] [PubMed]

Zhao, Q.

F. L. Zhang, W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express 19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zheludev, N. I.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
[CrossRef] [PubMed]

Zhou, J.

F. L. Zhang, W. H. Zhang, Q. Zhao, J. B. Sun, K. P. Qiu, J. Zhou, D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express 19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
[CrossRef]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

ACS Nano

B. Peng, G. Y. Li, D. H. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. H. Xiong, “Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants,” ACS Nano 7(7), 5993–6000 (2013).
[CrossRef] [PubMed]

Adv. Mater.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[CrossRef] [PubMed]

Analyst (Lond.)

R. A. Alvarez-Puebla, D. S. Dos Santos, R. F. Aroca, “Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols,” Analyst (Lond.) 129(12), 1251–1256 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. I. Petrov, V. V. Yakovlev, J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023 (2002).
[CrossRef]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, B. Z. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Chem. Soc. Rev.

Y. Liu, X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

V. Stockhausen, P. Martin, J. Ghilane, Y. Leroux, H. Randriamahazaka, J. Grand, N. Felidj, J. C. Lacroix, “Giant plasmon resonance shift using Poly(3,4-ethylenedioxythiophene) electrochemical switching,” J. Am. Chem. Soc. 132(30), 10224–10226 (2010).
[CrossRef] [PubMed]

J. Appl. Phys.

V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168 (2001).
[CrossRef]

J. Phys. Chem. Lett.

S. Dodson, M. Haggui, R. Bachelot, J. Plain, S. Li, Q. Xiong, “Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae,” J. Phys. Chem. Lett. 4(3), 496–501 (2013).
[CrossRef]

Nano Lett.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[CrossRef] [PubMed]

K. Appavoo, R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett. 11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[CrossRef] [PubMed]

J. Berthelot, A. Bouhelier, C. J. Huang, J. Margueritat, G. Colas-des-Francs, E. Finot, J. C. Weeber, A. Dereux, S. Kostcheev, H. I. Ahrach, A. L. Baudrion, J. Plain, R. Bachelot, P. Royer, G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9(11), 3914–3921 (2009).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Nanoscale

X. Wen, G. Li, J. Zhang, Q. Zhang, B. Peng, L. M. Wong, S. Wang, Q. Xiong, “Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering,” Nanoscale 6(1), 132–139 (2013).
[CrossRef] [PubMed]

Nat. Mater.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008).
[CrossRef] [PubMed]

Nat. Photonics

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Nature

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487(7407), 345–348 (2012).
[CrossRef] [PubMed]

Opt. Commun.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

H. Verleur, A. Barker, C. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[CrossRef]

Phys. Rev. Lett.

M. J. Polking, P. K. Jain, Y. Bekenstein, U. Banin, O. Millo, R. Ramesh, A. P. Alivisatos, “Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition,” Phys. Rev. Lett. 111(3), 037401 (2013).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[CrossRef] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103(14), 147401 (2009).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Rev. Mod. Phys.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Science

S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Small

T. A. Ming, L. Zhao, M. D. Xiao, J. F. Wang, “Resonance-coupling-based plasmonic switches,” Small 6(22), 2514–2519 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase change properties of VO2 film. (a) Temperature dependent resistance of the VO2 film in one heating/cooling cycle. (b) Raman spectra of VO2 film at insulating phase (RT) and metallic phase (80°C) respectively.

Fig. 2
Fig. 2

Split ring resonators (SRRs) on VO2. (a) dimension of a single SRR, Lx = Ly = 4w, h = 1.6w, Px = Px = 6w. (b) SEM image of SRR array on VO2 film, the arm width w is 40 nm.

Fig. 3
Fig. 3

Temperature-dependent transmission spectra. (a) Transmission during the heating process from 30 °C to 80 °C, the electric mode blue shifts while the magnetic mode red shifts. (b) Transmission during the cooling process from 80 °C to 30 °C, the electric mode red shifts while the magnetic mode blue shifts. (c) and (d) are extracted electric and magnetic modes resonances wavelength in one heating/cooling cycle, respectively.

Fig. 4
Fig. 4

Tunable SERS. (a) resonance wavelength at insulating phase (black) and metallic phase (red) respectively. (b) Raman spectra of monolayer 2-naphthalenethiol molecules attached to the SRR fabricated on VO2 film, the Raman intensity at 30 °C (black), at 80 °C (green) and when it cool back to 30 °C (red). Please be noted that the excitation laser wavelength is 785 nm.

Metrics