Abstract

We report the periodic concentric surface structures on SiO2 layer induced by a single shot nanosecond laser pulse at 1.06 μm. The fringe period of the structures ranges from 7.0 μm to 26.8 μm, depending on the laser fluence and the distance from central defect precursor. The size and depth of the damage sites increase almost linearly with the laser fluence from 19.6 J/cm2 to 61 J/cm2. Plasma flash was clearly observed during the damage process. We attribute the formation mechanism of the structures to the interference between the reflected laser radiations at the air/shock-front and the shock-front/film interfaces.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced periodic surface-structure on solids - a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
    [CrossRef]
  2. W. N. Han, L. Jiang, X. W. Li, P. J. Liu, L. Xu, Y. F. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
    [CrossRef] [PubMed]
  3. Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
    [CrossRef]
  4. A. Borowiec, H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [CrossRef]
  5. J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [CrossRef]
  6. Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [CrossRef]
  7. L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
    [CrossRef]
  8. E. L. Gurevich, “On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation,” Appl. Surf. Sci. 278, 52–56 (2013).
    [CrossRef]
  9. J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
    [CrossRef]
  10. V. N. Tokarev, V. I. Konov, “Suppression of thermocapillary waves in laser melting of metals and semiconductors,” J. Appl. Phys. 76(2), 800–805 (1994).
    [CrossRef]
  11. Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
    [CrossRef]
  12. Y. F. Lu, J. J. Yu, W. K. Choi, “Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/aluminum interfaces,” Appl. Phys. Lett. 71(23), 3439–3440 (1997).
    [CrossRef]
  13. J. R. Serrano, D. G. Cahill, “Micron-scale buckling of SiO2 on Si,” J. Appl. Phys. 92(12), 7606–7610 (2002).
    [CrossRef]
  14. Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
    [CrossRef]
  15. X. F. Liu, D. W. Li, Y. A. Zhao, X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49(10), 1774–1779 (2010).
    [CrossRef] [PubMed]
  16. X. F. Liu, Y. A. Zhao, D. W. Li, G. H. Hu, Y. Q. Gao, Z. X. Fan, J. D. Shao, “Characteristics of plasma scalds in multilayer dielectric films,” Appl. Opt. 50(21), 4226–4231 (2011).
    [CrossRef] [PubMed]
  17. R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
    [CrossRef]
  18. A. Heins, C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113(22), 223506 (2013).
    [CrossRef]
  19. S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
    [CrossRef]
  20. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [CrossRef]
  21. X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
    [CrossRef]
  22. S. Papernov, A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
    [CrossRef]
  23. J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
    [CrossRef] [PubMed]
  24. G. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1065), 159–174 (1950).
    [CrossRef]

2013 (4)

W. N. Han, L. Jiang, X. W. Li, P. J. Liu, L. Xu, Y. F. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[CrossRef] [PubMed]

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

E. L. Gurevich, “On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation,” Appl. Surf. Sci. 278, 52–56 (2013).
[CrossRef]

A. Heins, C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113(22), 223506 (2013).
[CrossRef]

2012 (3)

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

2011 (1)

2010 (1)

2008 (1)

S. Papernov, A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[CrossRef]

2005 (2)

X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

2003 (2)

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

A. Borowiec, H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

2002 (1)

J. R. Serrano, D. G. Cahill, “Micron-scale buckling of SiO2 on Si,” J. Appl. Phys. 92(12), 7606–7610 (2002).
[CrossRef]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

1997 (1)

Y. F. Lu, J. J. Yu, W. K. Choi, “Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/aluminum interfaces,” Appl. Phys. Lett. 71(23), 3439–3440 (1997).
[CrossRef]

1996 (1)

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

1994 (1)

V. N. Tokarev, V. I. Konov, “Suppression of thermocapillary waves in laser melting of metals and semiconductors,” J. Appl. Phys. 76(2), 800–805 (1994).
[CrossRef]

1991 (1)

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

1982 (1)

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced periodic surface-structure on solids - a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[CrossRef]

1950 (1)

G. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1065), 159–174 (1950).
[CrossRef]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Aoyagi, Y.

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Borowiec, A.

A. Borowiec, H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Brelet, Y.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Burris, R.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Cahill, D. G.

J. R. Serrano, D. G. Cahill, “Micron-scale buckling of SiO2 on Si,” J. Appl. Phys. 92(12), 7606–7610 (2002).
[CrossRef]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Chen, S. L.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Chen, X. L.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Choi, W. K.

Y. F. Lu, J. J. Yu, W. K. Choi, “Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/aluminum interfaces,” Appl. Phys. Lett. 71(23), 3439–3440 (1997).
[CrossRef]

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

Crawford, J.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Deng, Y. K.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Fan, Z. X.

Fang, R. C.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Forestier, B.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Fujii, K.

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

Gao, Y. Q.

Greif, R.

X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Grun, J.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Guo, C. L.

A. Heins, C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113(22), 223506 (2013).
[CrossRef]

Gurevich, E. L.

E. L. Gurevich, “On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation,” Appl. Surf. Sci. 278, 52–56 (2013).
[CrossRef]

Han, W. N.

Haugen, H. K.

A. Borowiec, H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

He, Z. B.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Heins, A.

A. Heins, C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113(22), 223506 (2013).
[CrossRef]

Houard, A.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Hu, G. H.

Jiang, H. B.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Jiang, L.

Kinomura, A.

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

Konov, V. I.

V. N. Tokarev, V. I. Konov, “Suppression of thermocapillary waves in laser melting of metals and semiconductors,” J. Appl. Phys. 76(2), 800–805 (1994).
[CrossRef]

Li, D. W.

Li, X.

Li, X. H.

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Li, X. W.

Liao, Y.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Liu, H.

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Liu, P. J.

Liu, X. F.

Liu, Y.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Lu, Y. F.

W. N. Han, L. Jiang, X. W. Li, P. J. Liu, L. Xu, Y. F. Lu, “Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes,” Opt. Express 21(13), 15505–15513 (2013).
[CrossRef] [PubMed]

Y. F. Lu, J. J. Yu, W. K. Choi, “Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/aluminum interfaces,” Appl. Phys. Lett. 71(23), 3439–3440 (1997).
[CrossRef]

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

Ma, P.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Ma, Y. R.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Manka, C.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Pan, F.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Papernov, S.

S. Papernov, A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[CrossRef]

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Pu, Y. T.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Qiu, R.

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Ren, H.

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Resnick, J.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Ripin, B. H.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Schmid, A. W.

S. Papernov, A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[CrossRef]

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

Serrano, J. R.

J. R. Serrano, D. G. Cahill, “Micron-scale buckling of SiO2 on Si,” J. Appl. Phys. 92(12), 7606–7610 (2002).
[CrossRef]

Shao, J. D.

Shi, P. C.

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced periodic surface-structure on solids - a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Stamper, J.

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Sun, P.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Taylor, G.

G. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1065), 159–174 (1950).
[CrossRef]

Tokarev, V. N.

V. N. Tokarev, V. I. Konov, “Suppression of thermocapillary waves in laser melting of metals and semiconductors,” J. Appl. Phys. 76(2), 800–805 (1994).
[CrossRef]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced periodic surface-structure on solids - a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

Wang, G.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Wang, J. B.

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

Wang, K.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Wang, Y. S.

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

Wu, Q. H.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Xiao, D. Q.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Xu, L.

Xue, L.

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

Yang, J. J.

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

Yang, Y.

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced periodic surface-structure on solids - a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[CrossRef]

Yu, J. J.

Y. F. Lu, J. J. Yu, W. K. Choi, “Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/aluminum interfaces,” Appl. Phys. Lett. 71(23), 3439–3440 (1997).
[CrossRef]

Yu, L. W.

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

Yu, Q. X.

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Zhao, Y. A.

Zhu, J. G.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Zhu, J. L.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Zhu, X. H.

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

Zhu, X. N.

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Y. F. Lu, J. J. Yu, W. K. Choi, “Theoretical analysis of laser-induced periodic structures at silicon-dioxide/ silicon and silicon-dioxide/aluminum interfaces,” Appl. Phys. Lett. 71(23), 3439–3440 (1997).
[CrossRef]

Y. Liu, Y. Brelet, Z. B. He, L. W. Yu, B. Forestier, Y. K. Deng, H. B. Jiang, A. Houard, “Laser-induced periodic annular surface structures on fused silica surface,” Appl. Phys. Lett. 102(25), 251103 (2013).
[CrossRef]

A. Borowiec, H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, X. L. Chen, K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

L. Xue, J. J. Yang, Y. Yang, Y. S. Wang, X. N. Zhu, “Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses,” Appl. Phys., A Mater. Sci. Process. 109(2), 357–365 (2012).
[CrossRef]

X. Zeng, X. L. Mao, R. Greif, R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

E. L. Gurevich, “On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation,” Appl. Surf. Sci. 278, 52–56 (2013).
[CrossRef]

High Power Laser Particle Beams (1)

R. Qiu, J. B. Wang, H. Ren, X. H. Li, P. C. Shi, H. Liu, P. Ma, “Growth of laser-induced damage in fused silica under nanosecond laser irradiation,” High Power Laser Particle Beams 24(5), 1057–1062 (2012).
[CrossRef]

J. Appl. Phys. (7)

A. Heins, C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113(22), 223506 (2013).
[CrossRef]

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

J. R. Serrano, D. G. Cahill, “Micron-scale buckling of SiO2 on Si,” J. Appl. Phys. 92(12), 7606–7610 (2002).
[CrossRef]

Y. T. Pu, P. Ma, S. L. Chen, J. L. Zhu, G. Wang, F. Pan, P. Sun, X. H. Zhu, J. G. Zhu, D. Q. Xiao, “Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films,” J. Appl. Phys. 112(2), 023111 (2012).
[CrossRef]

V. N. Tokarev, V. I. Konov, “Suppression of thermocapillary waves in laser melting of metals and semiconductors,” J. Appl. Phys. 76(2), 800–805 (1994).
[CrossRef]

Y. F. Lu, W. K. Choi, Y. Aoyagi, A. Kinomura, K. Fujii, “Controllable laser induced periodic structures at silicon–dioxide/silicon interface by excimer laser irradiation,” J. Appl. Phys. 80(12), 7052–7056 (1996).
[CrossRef]

S. Papernov, A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

J. E. Sipe, J. F. Young, J. S. Preston, H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure. II. Ecperiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Phys. Rev. Lett. (3)

H. M. van Driel, J. E. Sipe, J. F. Young, “Laser-induced periodic surface-structure on solids - a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[CrossRef]

J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, “Instability of Taylor-Sedov blast waves propagating through a uniform gas,” Phys. Rev. Lett. 66(21), 2738–2741 (1991).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

G. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1065), 159–174 (1950).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical microscopy images of damage sites (incidence angle 0°, 1-on-1 @1064 nm). Laser fluence: (a) 19.6 J/cm2; (b) 26.5 J/cm2; (c) 40.4 J/cm2; (d) 47.1 J/cm2; (e) 53.9 J/cm2; (f) 61 J/cm2. The threshold of the sample is measured to be around 10 J/cm2.

Fig. 2
Fig. 2

Diameter (a) and depth (b) of the damage sites as a function of incident laser fluence.

Fig. 3
Fig. 3

SEM microgram of the damage site at laser fluence of 47.1 J/cm2: (a) Full view of the damage site; (b), (c), and (d): Local magnified views of the marked rectangles (b)-(d) in (a).

Fig. 4
Fig. 4

Profile of the damage site at laser fluence of 47.1 J/cm2: (a) diameter X = 408.553 μm; (b) depth Z = 68.8 nm.

Fig. 5
Fig. 5

AFM images of the LICSS at laser fluence of 40.4 J/cm2, corresponding to Fig. 1(c) (scan area 50μm × 50μm).

Fig. 6
Fig. 6

Statistical spacing of the LICSS versus fluence of the incident laser.

Metrics