Abstract

We propose and demonstrate a distributed Brillouin fiber sensor using Stokes and anti-Stokes differential pulse pair based on double- sideband probe wave, in which the two sidebands of probe wave are used to balance the power of two pump pulses. The spatial resolution is determined by the slightly width difference of the two balanced pulses, without Brillouin gain spectrum broadening. The pulses perform gain-loss process in optical field before the probe signal being detected, without any post-processing or extra measurement time. The proposed technique can achieve high spatial resolution, natural Brillouin gain spectrum linewidth, normal measurement time and long sensing range simultaneously.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fellay, L. Thévenaz, and M. Facchini, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors, 324–327(1997).
  2. X. Bao, A. Brown, M. Demerchant, J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
    [CrossRef] [PubMed]
  3. A. W. Brown, B. G. Colpitts, K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [CrossRef]
  4. S. F. Mafang, M. Tur, J. C. Beugnot, L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [CrossRef]
  5. T. Sperber, A. Eyal, M. Tur, L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
    [CrossRef] [PubMed]
  6. J. C. Beugnot, M. Tur, S. F. Mafang, L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [CrossRef] [PubMed]
  7. Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Distributed Brillouin sensing with sub-meter spatial resolution based on four-section pulse,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OM3G.3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OM3G.3
    [CrossRef]
  8. W. Li, X. Bao, Y. Li, L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  9. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
    [CrossRef]
  10. A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87943I (2013).
    [CrossRef]
  11. Y. Li, X. Bao, Y. Dong, L. Chen, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” J. Lightwave Technol. 28(18), 2621–2626 (2010).
    [CrossRef]
  12. A. Motil, O. Danon, Y. Peled, M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
    [CrossRef]
  13. R. Bernini, A. Minardo, L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L (2009).
    [CrossRef]
  14. L. Thévenaz, S. F. Mafang, J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [CrossRef] [PubMed]
  15. R. Bernini, A. Minardo, L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
    [CrossRef] [PubMed]
  16. R. W. Boyd, Nonlinear Optics (Academic, 2003) 3th ed.
  17. R. Bernini, A. Minardo, L. Zeni, “Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors,” Opt. Eng. 41(9), 2186–2194 (2002).
    [CrossRef]
  18. M. A. Soto, M. Taki, G. Bolognini, F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
    [CrossRef] [PubMed]

2013

A. Motil, O. Danon, Y. Peled, M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

L. Thévenaz, S. F. Mafang, J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[CrossRef] [PubMed]

2012

2011

2010

2009

R. Bernini, A. Minardo, L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L (2009).
[CrossRef]

2008

2007

2002

R. Bernini, A. Minardo, L. Zeni, “Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors,” Opt. Eng. 41(9), 2186–2194 (2002).
[CrossRef]

1999

Antman, Y.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
[CrossRef]

Bao, X.

Bernini, R.

R. Bernini, A. Minardo, L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

R. Bernini, A. Minardo, L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L (2009).
[CrossRef]

R. Bernini, A. Minardo, L. Zeni, “Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors,” Opt. Eng. 41(9), 2186–2194 (2002).
[CrossRef]

Beugnot, J. C.

Bolognini, G.

Brown, A.

Brown, A. W.

Brown, K.

Chen, L.

Colpitts, B. G.

Danon, O.

A. Motil, O. Danon, Y. Peled, M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Demerchant, M.

Denisov, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
[CrossRef]

Di Pasquale, F.

Dong, Y.

Eyal, A.

Li, W.

Li, Y.

Lin, J.

Mafang, S. F.

Minardo, A.

R. Bernini, A. Minardo, L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

R. Bernini, A. Minardo, L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L (2009).
[CrossRef]

R. Bernini, A. Minardo, L. Zeni, “Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors,” Opt. Eng. 41(9), 2186–2194 (2002).
[CrossRef]

Motil, A.

A. Motil, O. Danon, Y. Peled, M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Peled, Y.

A. Motil, O. Danon, Y. Peled, M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
[CrossRef]

Sancho, J.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
[CrossRef]

Smith, J.

Soto, M. A.

Sperber, T.

Taki, M.

Thévenaz, L.

Tur, M.

Zadok, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
[CrossRef]

Zeni, L.

R. Bernini, A. Minardo, L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

R. Bernini, A. Minardo, L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L (2009).
[CrossRef]

R. Bernini, A. Minardo, L. Zeni, “Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors,” Opt. Eng. 41(9), 2186–2194 (2002).
[CrossRef]

J. Lightwave Technol.

Laser Photon. Rev.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6(5), L1–L5 (2012).
[CrossRef]

Opt. Eng.

R. Bernini, A. Minardo, L. Zeni, “Reconstruction technique for stimulated Brillouin scattering distributed fiber-optic sensors,” Opt. Eng. 41(9), 2186–2194 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. Motil, O. Danon, Y. Peled, M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

R. Bernini, A. Minardo, L. Zeni, “Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors,” Proc. SPIE 7356, 73560L (2009).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2003) 3th ed.

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87943I (2013).
[CrossRef]

A. Fellay, L. Thévenaz, and M. Facchini, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Proceedings of 12th International Conference on Optical Fiber Sensors, 324–327(1997).

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Distributed Brillouin sensing with sub-meter spatial resolution based on four-section pulse,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2013), paper OM3G.3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OM3G.3
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic model of the proposed technique. Green curve: pump wave; red curve: probe wave.

Fig. 2
Fig. 2

Experimental setup of the proposed technique. PC: polarization controller; EOM: electro-optic modulator; PG: pulse generator; ODL: optical delay line; Pol.: polarizer; Cir.: circulator; PS: polarization scrambler; Is.: isolator; PD: photodiode.

Fig. 3
Fig. 3

The 3D-mappings of Brillouin gain versus both location and frequency shift. (a): Brillouin gain of ODPA technique; (b): Brillouin gain of proposed technique.

Fig. 4
Fig. 4

The top view of 3D-mappings of Brillouin gain versus both location and frequency shift. (a): Brillouin gain of ODPA technique; (b): Brillouin gain of proposed technique.

Fig. 5
Fig. 5

(a): Time domain Brillouin signal using BOTDA, proposed technique and ODPA technique. (b) The Brillouin gain spectrum at two typical locations.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I p1 /z= g B ( I s1 I p1 I s2 I p2 )α I p1 ,
I p2 /z= g B ( I s2 I p2 I s3 I p2 )α I p2 ,
I s1 /z= g B I s1 I p1 +α I s1 ,
I s2 /z= g B ( I s2 I p2 I s2 I p1 )+α I s2 ,
I s3 /z= g B I s3 I p2 +α I s3 ,
I p1 (z, f m )= I p1 0 exp(αz) G 1 (z, f m ),
I p2 (z, f m )= I p2 0 exp(αz) G 2 (z, f m ),
G 1 (z, f m )=exp( 0 z g B ( z , f m )( I s1 L I s2 L )exp(α(L z ))d z ),
G 2 (z, f m )=exp( 0 z g B ( z , f m )( I s2 L I s3 L )exp(α(L z ))d z ).
I s2 (z, f m ) I s2 (z+Δz, f m ) =exp[ z+Δz z g B ( z , f m ) I p1 ( z , f m )d z z+Δz z g B ( z , f m ) I p2 ( z , f m )d z ]exp(αΔz).
I s2 (z, f m ) I s2 (z+Δz, f m ) =exp{ g B (z, f m ) c g [ I p1 (z, f m )(T+τ) I p2 (z, f m )T ]/2 }exp(αΔz),
I s2 (z=0,t, f m )= I s2 L exp(αL)* exp{ g B ( c g t/2, f m ) c g [ I p1 ( c g t/2, f m )(T+τ) I p2 ( c g t/2, f m )T ]/2 }.
G 1 (z, f m )=exp( 0 z g B ( z , f m ) I s2 L exp(α(L z ))d z ),
G 2 (z, f m )=exp( 0 z g B ( z , f m ) I s2 L exp(α(L z ))d z ).
I p1 (z, f m )T I p2 (z, f m )T<0.
I p1 (z, f m )T I p2 (z, f m )T+ I p1 (z, f m )τ<0.
G 1 (z,ν)= G 2 (z,ν)=1,
I p1 (z,ν)= I p2 (z,ν).
I p1 (z, f m )T I p2 (z, f m )T+ I p1 (z, f m )τ= I p1 (z, f m )τ.

Metrics