Abstract

We describe the fabrication and characterization of plasmonic waveguides based on a periodic one-dimensional array of symmetric and asymmetric T-shaped structures. The devices are fabricated in a polymer resin using conventional 3D printing and subsequently overcoated with ~500 nm of Au. Using terahertz (THz) time-domain spectroscopy, we systematically measure the guided-wave transmission properties of the devices as a function of the different geometrical parameters. Through these measurements, we find that the resonance frequency associated with the lowest order mode depends primarily on the structure height and the cap width and appears to be independent of its lateral width. We also perform numerical simulations using the same geometrical parameters and find excellent agreement between experiment and simulation. We fabricate a waveguide in which the lateral width of the T-shaped structures is tapered in a linear fashion. While the spectrum of this device is similar to one without tapering, we observe relatively little reduction in the mode size, even as the structure width is reduced by a factor of eight.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [CrossRef]
  3. R. Mendis, D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  4. M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
    [CrossRef]
  5. R. W. McGowan, G. Gallot, D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
    [CrossRef] [PubMed]
  6. J. A. Harrington, R. George, P. Pedersen, E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [CrossRef] [PubMed]
  7. K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  8. S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
    [CrossRef]
  9. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  10. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008).
    [CrossRef] [PubMed]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).
  12. W. Zhu, A. Agrawal, A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [CrossRef] [PubMed]
  13. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  14. J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  15. A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  16. G. Kumar, S. Pandey, A. Cui, A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
    [CrossRef]
  17. G. Kumar, A. Cui, S. Pandey, A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011).
    [CrossRef] [PubMed]
  18. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
    [CrossRef] [PubMed]
  19. C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
    [CrossRef]
  20. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [CrossRef] [PubMed]
  21. Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
    [CrossRef]
  22. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
    [CrossRef] [PubMed]
  23. G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
    [CrossRef]
  24. X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [CrossRef]
  25. W. Zhao, O. M. Eldaiki, R. Yang, Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
    [CrossRef] [PubMed]
  26. S. Pandey, B. Gupta, A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013).
    [CrossRef] [PubMed]
  27. X. Shou, A. Agrawal, A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13(24), 9834–9840 (2005).
    [CrossRef] [PubMed]
  28. A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [CrossRef]
  29. A. Nahata, W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
    [CrossRef] [PubMed]
  30. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [CrossRef] [PubMed]

2013

G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

S. Pandey, B. Gupta, A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Opt. Express 21(21), 24422–24430 (2013).
[CrossRef] [PubMed]

2011

2010

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[CrossRef]

W. Zhao, O. M. Eldaiki, R. Yang, Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

2009

2008

2007

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

A. Nahata, W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

2006

2005

2004

J. A. Harrington, R. George, P. Pedersen, E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2001

2000

S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

1999

1996

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Agrawal, A.

Andrews, S. R.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Argyros, A.

Carretero-Palacios, S.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

Chen, H. W.

Chen, L. J.

Cui, A.

G. Kumar, S. Pandey, A. Cui, A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[CrossRef]

G. Kumar, A. Cui, S. Pandey, A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011).
[CrossRef] [PubMed]

Cui, T. J.

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

Eldaiki, O. M.

Estacio, E.

Evans, B. R.

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Gallot, G.

Gao, Z.

Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[CrossRef]

Garcia-Vidal, F. J.

D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
[CrossRef] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

George, R.

Grischkowsky, D.

Gupta, B.

Harrington, J. A.

Heinz, T. F.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Jadidi, M. M.

G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[CrossRef]

Jamison, S. P.

G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

Kao, T. F.

Kumar, G.

G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[CrossRef]

G. Kumar, S. Pandey, A. Cui, A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[CrossRef]

G. Kumar, A. Cui, S. Pandey, A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19(2), 1072–1080 (2011).
[CrossRef] [PubMed]

Kurz, H.

M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Large, M. C.

Li, S.

G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[CrossRef]

Lu, J. Y.

Lu, Z.

Maier, S. A.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Martin-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

McGowan, R. W.

Mendis, R.

Misra, M.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

Mittleman, D. M.

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Moreno, E.

Mueller, E.

Murphy, T. E.

G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[CrossRef]

Nagel, M.

M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Nahata, A.

Nesterov, M. L.

Pandey, S.

Pedersen, P.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Pobre, R.

Ponseca, C. S.

Quevedo-Teruel, O.

Rodrigo, S. G.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Sarukura, N.

Shen, L.

Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[CrossRef]

Shen, X.

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

Shou, X.

Sun, C. K.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

van Eijkelenborg, M. A.

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Wächter, M.

M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Wang, K.

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Weling, A. S.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

Williams, C. R.

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Yang, R.

Zhang, X.

Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[CrossRef]

Zhao, W.

Zhu, W.

Appl. Phys. Lett.

M. Wächter, M. Nagel, H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

C. R. Williams, M. Misra, S. R. Andrews, S. A. Maier, S. Carretero-Palacios, S. G. Rodrigo, F. J. Garcia-Vidal, L. Martin-Moreno, “Dual band terahertz waveguiding on a planar metal surface patterned with annular holes,” Appl. Phys. Lett. 96(1), 011101 (2010).
[CrossRef]

X. Shen, T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[CrossRef]

J. Appl. Phys.

Z. Gao, X. Zhang, L. Shen, “Wedge mode of spoof surface plasmon polaritons at terahertz frequencies,” J. Appl. Phys. 108(11), 113104 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Nature

K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef] [PubMed]

New J. Phys.

G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy, “Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars,” New J. Phys. 15(8), 085031 (2013).
[CrossRef]

G. Kumar, S. Pandey, A. Cui, A. Nahata, “Planar plasmonic terahertz waveguides based on periodically corrugated metal films,” New J. Phys. 13(3), 033024 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Science

J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Waveguide design properties and characterization scheme. (a) Schematic diagram of the waveguide based on symmetric and asymmetric T-shaped structures. The expanded view shows the relevant geometrical parameters. THz radiation, polarized along the x-axis, is normally incident on the device and coupled to SPPs. The properties of the guided-wave THz electric field are measured via electro-optic sampling using a 1 mm thick <110> ZnTe crystal. (b) Image of a symmetric T-shaped structure with w1 = 100 µm, w2 = 100 µm, h1 = h2 = 100 µm, g = 200 µm, L = 800 µm and p = 500 µm. (c) Image of a completely asymmetric inverted-L structure with w1 = 0 µm and w2 = 200 µm. The other parameters are the same as in (b).

Fig. 2
Fig. 2

Experimentally measured and numerically simulated waveguide transmission spectra for 7 cm long devices as a function of asymmetry. In both sets of data, the parameters w1 and w2 were varied, while w = w1 + w2 = 200 µm was kept constant. The other device parameters, h1 = h2 = 150 µm, g = 200 µm, L = 800 µm and p = 500 µm were also kept constant (a) Experimentally measured spectra. (Inset) Schematic diagram of the T-shaped structures with the relevant parameter shown for both sets of data. (b) Numerically simulated spectra.

Fig. 3
Fig. 3

Experimentally measured and numerically simulated waveguide transmission spectra for 7 cm long devices as a function of asymmetry. In both sets of data, the parameter h1 was varied, while h = h1 + h2 = 400 µm was kept constant. The other device parameters, w1 = w2 = 100 µm (i.e. symmetric T structure), g = 200 µm, L = 800 µm and p = 500 µm were also kept constant (a) Experimentally measured spectra. (Inset) Schematic diagram of the T-shaped structures with the relevant parameter shown for both sets of data. (b) Numerically simulated spectra.

Fig. 4
Fig. 4

Experimentally measured and numerically simulated waveguide transmission spectra for 7 cm long devices as a function of the periodicity, p. The other device parameters, h1 = h2 = 100 µm, w1 = w2 = 100 µm (i.e. symmetric T structure), g = 200 µm, and L = 800 µm were kept constant (a) Experimentally measured spectra. (Inset) Schematic diagram of the T-shaped structures with the relevant parameter shown for both sets of data. (b) Numerically simulated spectra.

Fig. 5
Fig. 5

Experimentally measured and numerically simulated waveguide transmission spectra for 7 cm long devices as a function of the structure width, L. The other device parameters, h1 = h2 = 100 µm, w1 = w2 = 100 µm (i.e. symmetric T structure), g = 200 µm, and p = 500 µm were kept constant (a) Experimentally measured spectra. (Inset) Schematic diagram of the T-shaped structures with the relevant parameter shown for both sets of data. (b) Numerically simulated spectra.

Fig. 6
Fig. 6

The |Ez| component of the electric field measured along the z-axis at different heights above the sample surface for the (a) symmetric T-shaped structure: h1 = h2 = 100 µm, w1 = w2 = 100 µm, g = 200 µm, L = 800 µm and p = 500 µm (b) asymmetric inverted-L structure: h1 = h2 = 100 µm, w1 = 200 µm, w2 = 0 µm, g = 200 µm, L = 800 µm and p = 500 µm.

Fig. 7
Fig. 7

The |Ez| component of the electric field measured along the x-axis for the (a) symmetric T-shaped structure: h1 = h2 = 100 µm, w1 = w2 = 100 µm, g = 200 µm, L = 800 µm and p = 500 µm (b) asymmetric inverted-L structure: h1 = h2 = 100 µm, w1 = 200 µm, w2 = 0 µm, g = 200 µm, L = 800 µm and p = 500 µm. The 1/e propagation lengths are 5.6 cm for (a) and 5.5 cm for (b).

Fig. 8
Fig. 8

Snapshots of the magnitude of the electric field for the (a) symmetric T-shaped structures in the xz plane (b) asymmetric inverted L-shaped structures in the xz plane (c) symmetric T-shaped structures in the xy plane immediately above the structure surface (d) asymmetric inverted L-shaped structures in the xy plane immediately above the structure surface (e) Color code that applies to all four snapshots.

Fig. 9
Fig. 9

Guided-wave properties of a tapered waveguide based on symmetric T-shaped structures. (c) Image of the 7 cm long tapered waveguide with dimensions: w1 = w2 = 100 µm, h1 = h2 = 100 µm, g = 200 µm and p = 500 µm. The lateral width L decreases linearly from L = 800 µm at the input to L = 100 µm at the output. (b) Experimental and numerically simulated guided-wave transmission spectrum. (c) The |Ez| field amplitude measured along the y-axis at four different positions along the waveguide where L = 700µm, L = 500µm, L = 300µm, L = 100µm. y = 0 corresponds to the center of the waveguide. Each of the data sets is fit to a Gaussian function and is color-coded to the data.

Tables (1)

Tables Icon

Table 1 Waveguide Parameters and Corresponding Resonance Minima Frequencies (g = 200 µm in all cases) from Experimental Results, Simulation Results and the Model (Eq. (1))

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν m c 4.5( h+w ) .

Metrics