Abstract

Optical microresonator biosensors have proven to be a valid tool to perform affinity analysis of a biological binding event. However, when these microresonators are excited with a single optical mode they can not distinguish between a thin dense layer of biomolecules or a thick sparse layer. This means the sensor is ”blind” to changes in shape of bound biomolecules. We succeeded in exciting a Silicon-on-Insulator (SOI) microring with TE and TM polarisations simultaneously by using an asymmetrical directional coupler and as such were able to seperately determine the thickness and the density (or refractive index) of a bound biolayer. A proof-of-concept is given by determining both parameters of deposited dielectric layers and by analysing the conformational changes of Bovine Serum Albumin (BSA) proteins due to a change in pH of the buffer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U.S. Department of Health and Human Services: Food and Drug Administration, “Is it true FDA is approving fewer drugs lately?” (2011). http://www.fda.gov/AboutFDA/Transparency/Basics/ucm247348.htm .
  2. European Federation of Pharmaceutical Industries and Associations, “The pharmaceutical Industry in figures -Edition 2011,” (2011). http://www.efpia.eu/pharmaceutical-industry-figures-edition-2011 .
  3. U.S. Department of Health and Human Services: Food and Drug Administration, “Innovation or stagnation: Challenge and opportunity on the critical path to new medical products” (2004). http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/ucm076689.htm .
  4. P. R. Connelly, T. M. Vuong, M. Murcko, “Getting physical to fix pharma,” Nat. Chem. 3, 692–695 (2011).
    [CrossRef] [PubMed]
  5. E. Reynaud, “Protein misfolding and degenerative diseases,” Nat. Educ. 3(9), 28 (2010).
  6. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
    [CrossRef]
  7. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
    [CrossRef]
  8. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).
  9. N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
    [CrossRef]
  10. S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
    [CrossRef] [PubMed]
  11. F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
    [CrossRef]
  12. Y. Atsumi, D.-X. Xu, A. Delâge, J. H. Schmid, M. Vachon, P. Cheben, S. Janz, N. Nishiyama, S. Arai, “Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors,” Opt. Express 20, 26969–26977 (2012). +
    [CrossRef] [PubMed]
  13. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
    [CrossRef]
  14. J. T. Robinson, K. Preston, O. Painter, M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
    [CrossRef] [PubMed]
  15. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2008).
  16. J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
    [CrossRef] [PubMed]
  17. F. Morichetti, A. Melloni, M. Martinelli, “Effects of Polarization Rotation in Optical Ring-Resonator-Based Devices,” J. Lightwave Technol. 24, 573–585 (2006).
    [CrossRef]
  18. K. E. D. Coan, M. J. Swann, J. Ottl, “Measurement and differentiation of ligand-induced calmodulin conformations by dual polarization interferometry,” Anal. Chem. 84, 1586–1591 (2012).
    [CrossRef] [PubMed]
  19. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  20. L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
    [CrossRef] [PubMed]
  21. P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
    [CrossRef]
  22. N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
    [CrossRef]
  23. P. D. Coffey, M. J. Swann, T. A. Waigh, F. Schedin, J. R. Lu, “Multiple path length dual polarization interferometry,” Opt. Express 17, 10959–10969 (2009).
    [CrossRef] [PubMed]
  24. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [CrossRef] [PubMed]
  25. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
    [CrossRef]
  26. T. Peters, “Serum Albumin,” Adv. Protein Chem. 37, 161–245 (1985).
    [CrossRef] [PubMed]
  27. S. H. Brorson, “Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on LR-White and epoxy resin,” Micron 28, 189–195 (1997).
    [CrossRef] [PubMed]
  28. D. C. Carter, J. X. Ho, “Structure of serum albumin,” Adv. Protein Chem. 45, 153–203 (1994).
    [CrossRef] [PubMed]
  29. B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
    [CrossRef]
  30. S. B. Habib, E. G. Ii, R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” J. Vac. Sci. Technol. A 28, 476–485 (2013).
    [CrossRef]
  31. Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
    [CrossRef] [PubMed]

2013 (2)

F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
[CrossRef]

S. B. Habib, E. G. Ii, R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” J. Vac. Sci. Technol. A 28, 476–485 (2013).
[CrossRef]

2012 (3)

P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
[CrossRef]

Y. Atsumi, D.-X. Xu, A. Delâge, J. H. Schmid, M. Vachon, P. Cheben, S. Janz, N. Nishiyama, S. Arai, “Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors,” Opt. Express 20, 26969–26977 (2012). +
[CrossRef] [PubMed]

K. E. D. Coan, M. J. Swann, J. Ottl, “Measurement and differentiation of ligand-induced calmodulin conformations by dual polarization interferometry,” Anal. Chem. 84, 1586–1591 (2012).
[CrossRef] [PubMed]

2011 (3)

L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
[CrossRef] [PubMed]

P. R. Connelly, T. M. Vuong, M. Murcko, “Getting physical to fix pharma,” Nat. Chem. 3, 692–695 (2011).
[CrossRef] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

2010 (2)

E. Reynaud, “Protein misfolding and degenerative diseases,” Nat. Educ. 3(9), 28 (2010).

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

2009 (4)

P. D. Coffey, M. J. Swann, T. A. Waigh, F. Schedin, J. R. Lu, “Multiple path length dual polarization interferometry,” Opt. Express 17, 10959–10969 (2009).
[CrossRef] [PubMed]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (3)

S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, M. Martinelli, “Effects of Polarization Rotation in Optical Ring-Resonator-Based Devices,” J. Lightwave Technol. 24, 573–585 (2006).
[CrossRef]

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

2004 (3)

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef] [PubMed]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

1997 (1)

S. H. Brorson, “Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on LR-White and epoxy resin,” Micron 28, 189–195 (1997).
[CrossRef] [PubMed]

1994 (1)

D. C. Carter, J. X. Ho, “Structure of serum albumin,” Adv. Protein Chem. 45, 153–203 (1994).
[CrossRef] [PubMed]

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

1985 (1)

T. Peters, “Serum Albumin,” Adv. Protein Chem. 37, 161–245 (1985).
[CrossRef] [PubMed]

Aitchison, J. S.

F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
[CrossRef]

Alam, M. Z.

F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
[CrossRef]

Arai, S.

Atsumi, Y.

Baehr-jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Bahrami, F.

F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
[CrossRef]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Bartolozzi, I.

Berney, H.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Brand, S.

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

Brorson, S. H.

S. H. Brorson, “Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on LR-White and epoxy resin,” Micron 28, 189–195 (1997).
[CrossRef] [PubMed]

Carter, D. C.

D. C. Carter, J. X. Ho, “Structure of serum albumin,” Adv. Protein Chem. 45, 153–203 (1994).
[CrossRef] [PubMed]

Cheben, P.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

Coan, K. E. D.

K. E. D. Coan, M. J. Swann, J. Ottl, “Measurement and differentiation of ligand-induced calmodulin conformations by dual polarization interferometry,” Anal. Chem. 84, 1586–1591 (2012).
[CrossRef] [PubMed]

Coffey, P. D.

Connelly, P. R.

P. R. Connelly, T. M. Vuong, M. Murcko, “Getting physical to fix pharma,” Nat. Chem. 3, 692–695 (2011).
[CrossRef] [PubMed]

Cross, G. H.

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

De Heyn, P.

P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Delâge, A.

Ding, Y.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Freeman, N. J.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
[CrossRef] [PubMed]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Habib, S. B.

S. B. Habib, E. G. Ii, R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” J. Vac. Sci. Technol. A 28, 476–485 (2013).
[CrossRef]

Hicks, R. F.

S. B. Habib, E. G. Ii, R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” J. Vac. Sci. Technol. A 28, 476–485 (2013).
[CrossRef]

Ho, J. X.

D. C. Carter, J. X. Ho, “Structure of serum albumin,” Adv. Protein Chem. 45, 153–203 (1994).
[CrossRef] [PubMed]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Hurley, E.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

Hvam, J. M.

Ii, E. G.

S. B. Habib, E. G. Ii, R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” J. Vac. Sci. Technol. A 28, 476–485 (2013).
[CrossRef]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Jaenen, P.

Janz, S.

Jeyachandran, Y. L.

Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Kumar, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Lillis, B.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

Lipson, M.

Liu, L.

Lu, J. R.

P. D. Coffey, M. J. Swann, T. A. Waigh, F. Schedin, J. R. Lu, “Multiple path length dual polarization interferometry,” Opt. Express 17, 10959–10969 (2009).
[CrossRef] [PubMed]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

Manning, M.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

Martinelli, M.

Mathewson, A.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Melloni, A.

Mielczarski, E.

Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
[CrossRef] [PubMed]

Mielczarski, J. A.

Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
[CrossRef] [PubMed]

Mojahedi, M.

F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
[CrossRef]

Morichetti, F.

Murcko, M.

P. R. Connelly, T. M. Vuong, M. Murcko, “Getting physical to fix pharma,” Nat. Chem. 3, 692–695 (2011).
[CrossRef] [PubMed]

Nishiyama, N.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2008).

Ottl, J.

K. E. D. Coan, M. J. Swann, J. Ottl, “Measurement and differentiation of ligand-induced calmodulin conformations by dual polarization interferometry,” Anal. Chem. 84, 1586–1591 (2012).
[CrossRef] [PubMed]

Painter, O.

Peel, L. L.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
[CrossRef] [PubMed]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

Peters, T.

T. Peters, “Serum Albumin,” Adv. Protein Chem. 37, 161–245 (1985).
[CrossRef] [PubMed]

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

Preston, K.

Rai, B.

Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
[CrossRef] [PubMed]

Reeves, A.

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

Reynaud, E.

E. Reynaud, “Protein misfolding and degenerative diseases,” Nat. Educ. 3(9), 28 (2010).

Ricard-Blum, S.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
[CrossRef] [PubMed]

Robinson, J. T.

Roelkens, G.

P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
[CrossRef]

Ruggiero, F.

S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
[CrossRef] [PubMed]

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Schedin, F.

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Schmid, J. H.

Selvaraja, S. K.

Sheehan, M. M.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Swann, M. J.

K. E. D. Coan, M. J. Swann, J. Ottl, “Measurement and differentiation of ligand-induced calmodulin conformations by dual polarization interferometry,” Anal. Chem. 84, 1586–1591 (2012).
[CrossRef] [PubMed]

P. D. Coffey, M. J. Swann, T. A. Waigh, F. Schedin, J. R. Lu, “Multiple path length dual polarization interferometry,” Opt. Express 17, 10959–10969 (2009).
[CrossRef] [PubMed]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Vachon, M.

Van Thourhout, D.

P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

Vermeulen, D.

P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
[CrossRef]

Voros, J.

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef] [PubMed]

Vuong, T. M.

P. R. Connelly, T. M. Vuong, M. Murcko, “Getting physical to fix pharma,” Nat. Chem. 3, 692–695 (2011).
[CrossRef] [PubMed]

Waigh, T. A.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Xu, D.-X.

Yvind, K.

Adv. Protein Chem. (2)

T. Peters, “Serum Albumin,” Adv. Protein Chem. 37, 161–245 (1985).
[CrossRef] [PubMed]

D. C. Carter, J. X. Ho, “Structure of serum albumin,” Adv. Protein Chem. 45, 153–203 (1994).
[CrossRef] [PubMed]

Anal. Biochem. (2)

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Dual-polarisation interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Anal. Biochem. 329, 190–198 (2004).
[CrossRef]

S. Ricard-Blum, L. L. Peel, F. Ruggiero, N. J. Freeman, “Dual polarisation interferometry characterization of carbohydrate-protein interactions,” Anal. Biochem. 352, 252–259 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. E. D. Coan, M. J. Swann, J. Ottl, “Measurement and differentiation of ligand-induced calmodulin conformations by dual polarization interferometry,” Anal. Chem. 84, 1586–1591 (2012).
[CrossRef] [PubMed]

Biophys. J. (1)

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21, 1459–1467 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

IEEE Photonics J. (1)

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1, 225–235 (2009).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

P. De Heyn, D. Vermeulen, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator all-pass microring resonators using a polarization rotating coupling section,” IEEE Photonics Technol. Lett. 24, 1176–1178 (2012).
[CrossRef]

J. Lightwave Technol. (2)

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

J. Phys. Condens. Matter (1)

N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, J. R. Lu, “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” J. Phys. Condens. Matter 16, 2493–2496 (2004).
[CrossRef]

J. Vac. Sci. Technol. A (1)

S. B. Habib, E. G. Ii, R. F. Hicks, “Atmospheric oxygen plasma activation of silicon (100) surfaces,” J. Vac. Sci. Technol. A 28, 476–485 (2013).
[CrossRef]

Langmuir (1)

Y. L. Jeyachandran, E. Mielczarski, B. Rai, J. A. Mielczarski, “Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces,” Langmuir 25, 11614–11620 (2009)
[CrossRef] [PubMed]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 1–28 (2011).

Micron (1)

S. H. Brorson, “Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on LR-White and epoxy resin,” Micron 28, 189–195 (1997).
[CrossRef] [PubMed]

Nat. Chem. (1)

P. R. Connelly, T. M. Vuong, M. Murcko, “Getting physical to fix pharma,” Nat. Chem. 3, 692–695 (2011).
[CrossRef] [PubMed]

Nat. Educ. (1)

E. Reynaud, “Protein misfolding and degenerative diseases,” Nat. Educ. 3(9), 28 (2010).

Opt. Express (5)

Plasmonics (1)

F. Bahrami, M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Dual polarization measurements in the hybrid plasmonic biosensors,” Plasmonics 8, 465–473 (2013).
[CrossRef]

Other (5)

U.S. Department of Health and Human Services: Food and Drug Administration, “Is it true FDA is approving fewer drugs lately?” (2011). http://www.fda.gov/AboutFDA/Transparency/Basics/ucm247348.htm .

European Federation of Pharmaceutical Industries and Associations, “The pharmaceutical Industry in figures -Edition 2011,” (2011). http://www.efpia.eu/pharmaceutical-industry-figures-edition-2011 .

U.S. Department of Health and Human Services: Food and Drug Administration, “Innovation or stagnation: Challenge and opportunity on the critical path to new medical products” (2004). http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/ucm076689.htm .

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2008).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Sensitivity of the microring resonator to binding of a thin biolayer in water for fundamental quasi-TE mode and fundamental quasi-TM mode, obtained with Fimmwave. The height of the waveguide is fixed at 220 nm and the excitation wavelength is 1550 nm. The region of interest is denoted by W1 and W2, where only the fundamental TE and the TM mode are guided

Fig. 2
Fig. 2

(a) View of the cross section of the ring waveguide as it is used for simulations. (b) Simulations of the wavelength shifts for both modes in function of the thickness of the protein layer for various refractive indices of this layer. The fitting of this data to the model results in an R2 value of 0.9998.

Fig. 3
Fig. 3

Mean error on determination of t and n for various widths of the waveguide, with a fixed height of 220 nm.

Fig. 4
Fig. 4

(a) Effective index of the first three guided modes for a rectangular waveguide with a height of 220 nm and water cladding. The black lines show the slight phase mismatch for a 550 nm ring waveguide and a 290 nm access waveguide. (b) Measured fiber to fiber spectrum of the microring with water cladding. Both the TE and the TM resonances are visible

Fig. 5
Fig. 5

SEM image of the microring with access waveguide and a square region where the ions bombarded the coupling section (a). After the ion bombardment, a SEM image of the cross section of the coupling section is taken (b), which shows the waveguide dimensions.

Fig. 6
Fig. 6

Schematic diagram of the calibration and the actual experiment. The calibration measurements are done before the measurements for the actual experiment start. They are used to obtain the simulation parameters. These simulations finally determine the model to solve the experimental measurements to the characteristics of the protein layer.

Fig. 7
Fig. 7

By measuring the FSR of both modes during a water phase prior to the following BSA experiment, the (a) width of the ring waveguide was determined with a mean value of 491.7 nm. (b) The height was calculated to be 210.7 nm.

Fig. 8
Fig. 8

(a) Simulation of the wavelength shift of the TE mode in function of the refractive index of a cladding layer with waveguide dimensions of W = 491 nm and H = 210 nm. The wavelength shift is simulated with respect to a buffer with nbuff = 1.32. (b) Shift of the TE resonance when switching from water to buffer (PBS in this case), as measured in the BSA experiment.

Fig. 9
Fig. 9

The dots indicate the measured wavelength shift for TE and TM mode for oxynitride layers with various (t,n) combinations. The solid lines represent the measurements done with an ellipsometer.

Fig. 10
Fig. 10

(a) Resonance wavelength shift of the fundamental TE mode and fundamental TM mode of the BSA experiment in function of time. (b) Adsorbed mass ng/mm2 of BSA molecules to the silicon surface.

Fig. 11
Fig. 11

Thickness and refractive index profile of the layer consisting of adsorbed BSA molecules.

Tables (1)

Tables Icon

Table 1 Comparison of the thickness, refractive index and adsorbed mass between the technique described in this paper (SOI Microring) and the silicon nitride dual polarisation interferometric (DPI) technique used in [22].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

λ T E = L n eff , T E m
λ T M = L n eff , T M m
Δ λ ( n , t ) = Δ n eff ( n , t ) λ n g
Δ λ T E = f ( n , t )
Δ λ T M = g ( n , t )
Δ λ n ( x , y ) Δ n ( x , y ) | E ( x , y ) | 2 d x d y n 2 ( x , y ) | E ( x , y ) | 2 d x d y
Δ λ ( n , t ) = B ( n n b ) n f p ( t , n ) 1 + n 2 f p ( t , n ) + n b 2 f b ( t , n )
f p ( t , n ) = A t , p [ 1 exp ( 2 δ p t ) ] + A s , b [ 1 exp ( 2 δ p t ) ]
f b ( t , n ) = A t , b [ exp ( 2 δ b t ) ] + A s , b [ exp ( 2 δ b t ) ]
δ p = k ( n eff n ) 1 / 2
δ b = k ( n eff n b ) 1 / 2
FSR = λ 2 n g L
n b = n water + Δ λ T E , b λ T E n b
ρ = ρ mol n n B n mol n B
M = ρ t

Metrics