Abstract

This paper presents an effective integration scheme of nanostructured SnO2 with the fiber optic platform for chemical sensing applications based on evanescent optical interactions. By using a triblock copolymer as a structure directing agent as the means of nano-structuring, the refractive index of SnO2 is reduced from >2.0 to 1.46, in accordance with effective medium theory for optimal on-fiber integration. High-temperature stable fiber Bragg gratings inscribed in D-shaped fibers were used to perform real-time characterization of optical absorption and refractive index modulation of metal oxides in response to NH3 from the room temperature to 500°C. Measurement results reveals that the redox reaction of the nanostructured metal oxides exposed to a reactive gas NH3 induces much stronger changes in optical absorption as opposed to changes in the refractive index. Results presented in this paper provide important guidance for fiber optic chemical sensing designs based on metal oxide nanomaterials.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006).
    [CrossRef]
  2. G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sens. Actuators B Chem. 107, 209–232 (2005).
  3. G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?” Mat. Sci. Eng. B Solid. 139(1), 1–23 (2007).
    [CrossRef]
  4. N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B Chem. 108, 2–14 (2005).
  5. N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B Chem. 5, 7–19 (1991).
  6. A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
    [CrossRef] [PubMed]
  7. E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
    [CrossRef]
  8. R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
    [CrossRef]
  9. H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
    [CrossRef]
  10. P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
    [CrossRef]
  11. M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
    [CrossRef] [PubMed]
  12. I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
    [CrossRef] [PubMed]
  13. B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
    [CrossRef] [PubMed]
  14. A. Rothschild, Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys. 95(11), 6374–6380 (2004).
    [CrossRef]
  15. S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
    [CrossRef]
  16. X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
    [CrossRef] [PubMed]
  17. M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
    [CrossRef]
  18. J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
    [CrossRef] [PubMed]
  19. Z.-M. Qi, Z. Hao-shen, and I. Honma, “Mesostructured and mesoporous metal oxide films for optical waveguide-based gas sensor application,” Sensors 2004, Proceedings of IEEE (2004), vol. 1313, pp. 1316–1319.
  20. A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).
  21. Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009).
    [CrossRef] [PubMed]
  22. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).
  23. X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
    [CrossRef]
  24. J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
    [CrossRef]
  25. X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).
  26. J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
    [CrossRef] [PubMed]
  27. Z. Gu, Y. Xu, K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett. 31(16), 2405–2407 (2006).
    [CrossRef] [PubMed]
  28. T. Chuen-Lin, C. Tzu-Chung, C. Chun-Chia, C. Yu-Zong, and L. Wen-Fung, “Tuning sensitivity of liquid refractive index sensor based on side-polishing fiber Bragg gratings,” in Optical Fiber Communication and Optoelectronic Exposition and Conference, 2008. AOE 2008. Asia (2008), pp. 1–3.
  29. X. Chen, K. Zhou, L. Zhang, I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005).
    [CrossRef] [PubMed]
  30. Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
    [CrossRef]
  31. A. Hartung, S. Brueckner, H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010).
    [CrossRef] [PubMed]
  32. G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).
  33. H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012).
    [CrossRef]
  34. D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
    [CrossRef]
  35. K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
    [CrossRef] [PubMed]
  36. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
    [CrossRef]
  37. S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
    [CrossRef] [PubMed]
  38. V. N. Urade, H. W. Hillhouse, “Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure,” J. Phys. Chem. B 109(21), 10538–10541 (2005).
    [CrossRef] [PubMed]
  39. R. Landauer, “Electrical conductivity in inhomogeneous media,” AIP Conf. Proc. 40, 2–45 (1978).
    [CrossRef]
  40. L. Rosenfeld, Theory of Electrons, Vol. 1 in Selected Topics in Modern Physics (North-Holland, 1951), pp. xv, 119 p.
  41. J. Isidorsson, C. G. Granqvist, K. von Rottkay, M. Rubin, “Ellipsometry on sputter-deposited tin oxide films: optical constants versus stoichiometry, hydrogen content, and amount of electrochemically intercalated lithium,” Appl. Opt. 37(31), 7334–7341 (1998).
    [CrossRef] [PubMed]
  42. M. L. Åslund, J. Canning, M. Stevenson, K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 ° C,” Opt. Lett. 35(4), 586–588 (2010).
    [CrossRef] [PubMed]
  43. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
    [CrossRef] [PubMed]
  44. W. Johnstone, G. Thursby, D. Moodie, K. McCallion, “Fiber-optic refractometer that utilizes multimode waveguide overlay devices,” Opt. Lett. 17(21), 1538–1540 (1992).
    [CrossRef] [PubMed]
  45. W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  46. A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
    [CrossRef] [PubMed]

2012

R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
[CrossRef]

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012).
[CrossRef]

2011

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
[CrossRef]

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
[CrossRef] [PubMed]

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[CrossRef] [PubMed]

2010

A. Hartung, S. Brueckner, H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010).
[CrossRef] [PubMed]

M. L. Åslund, J. Canning, M. Stevenson, K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 ° C,” Opt. Lett. 35(4), 586–588 (2010).
[CrossRef] [PubMed]

M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
[CrossRef]

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
[CrossRef] [PubMed]

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
[CrossRef]

2009

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009).
[CrossRef] [PubMed]

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

2008

A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
[CrossRef] [PubMed]

J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

2007

G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?” Mat. Sci. Eng. B Solid. 139(1), 1–23 (2007).
[CrossRef]

2006

S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006).
[CrossRef]

M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
[CrossRef]

Z. Gu, Y. Xu, K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett. 31(16), 2405–2407 (2006).
[CrossRef] [PubMed]

2005

X. Chen, K. Zhou, L. Zhang, I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005).
[CrossRef] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

V. N. Urade, H. W. Hillhouse, “Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure,” J. Phys. Chem. B 109(21), 10538–10541 (2005).
[CrossRef] [PubMed]

G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sens. Actuators B Chem. 107, 209–232 (2005).

N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B Chem. 108, 2–14 (2005).

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

2004

A. Rothschild, Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys. 95(11), 6374–6380 (2004).
[CrossRef]

2000

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

1999

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

1998

1993

G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).

1992

1991

N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B Chem. 5, 7–19 (1991).

1978

R. Landauer, “Electrical conductivity in inhomogeneous media,” AIP Conf. Proc. 40, 2–45 (1978).
[CrossRef]

Agrawal, V. V.

P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
[CrossRef]

Akbar, S.

S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006).
[CrossRef]

Albert, K. J.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Andreev, A. T.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Asakura, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

Åslund, M. L.

Atanasov, P. A.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Atanasova, G. B.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Bandyopadhyay, S.

Bartelt, H.

Bennion, I.

Biswas, P.

Bright, C.

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

Brown, S. A.

A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
[CrossRef] [PubMed]

Brueckner, S.

Canning, J.

Cao, K.

Chen, X.

Chen, Y.

Chmelka, B. F.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

Comini, E.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

Concina, I.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

Cook, K.

Culshaw, B.

G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).

Dai, J.

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[CrossRef] [PubMed]

M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
[CrossRef]

Dasgupta, K.

Deng, J.

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

Devan, R. S.

R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
[CrossRef]

Dikovska, A. O.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Dimitrov, M.

S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
[CrossRef] [PubMed]

Dong, J.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
[CrossRef]

Duan, H.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

Dutta, P.

S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006).
[CrossRef]

Faglia, G.

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

Falasconi, M.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

Ferroni, M.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

Franke, M. E.

M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Gao, K.

Gaspar, D. J.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Ginley, D. S.

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

Gobbi, E.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

Granqvist, C. G.

Gu, Z.

Guan, N.

S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
[CrossRef] [PubMed]

Hartung, A.

Hasegawa, T.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

Hillhouse, H. W.

V. N. Urade, H. W. Hillhouse, “Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure,” J. Phys. Chem. B 109(21), 10538–10541 (2005).
[CrossRef] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Isidorsson, J.

Jang, J.-H.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

Jo, S. M.

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

Johnstone, W.

Kalantar-zadeh, K.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

Kaner, R. B.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

Karakoleva, E. I.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Kaushik, A.

P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
[CrossRef]

Kim, D. Y.

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

Kim, I. D.

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

Kim, M. J.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

Kim, Y. H.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

Kioupakis, E.

H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012).
[CrossRef]

Köhn, R.

S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
[CrossRef] [PubMed]

Komem, Y.

A. Rothschild, Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys. 95(11), 6374–6380 (2004).
[CrossRef]

Koplin, T. J.

M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Korotcenkov, G.

G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?” Mat. Sci. Eng. B Solid. 139(1), 1–23 (2007).
[CrossRef]

G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sens. Actuators B Chem. 107, 209–232 (2005).

Korotkov, R.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Lan, X.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

Landauer, R.

R. Landauer, “Electrical conductivity in inhomogeneous media,” AIP Conf. Proc. 40, 2–45 (1978).
[CrossRef]

Lassesson, A.

A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
[CrossRef] [PubMed]

Lee, B. H.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

Lee, C.

S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Lewis, N. S.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Li, J.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

Li, X.

M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liao, H.

Lin, J.-H.

R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
[CrossRef]

Lin, Y. S.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

Luo, M.

J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
[CrossRef]

Ma, Y.-R.

R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
[CrossRef]

Malhotra, B. D.

P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
[CrossRef]

Margolese, D. I.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

McCallion, K.

Mitchell, A.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

Moodie, D.

Muhammad, F. A.

G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).

Murayama, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

Nakagawa, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

Nedyalkov, N. N.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Okazaki, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

Ou, J. Z.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

Padmaperuma, A. B.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Park, M.-S.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

Patil, R. A.

R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
[CrossRef]

Peelaers, H.

H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012).
[CrossRef]

Ponzoni, A.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

Provenzano, J.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

Remmel, K.

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

Rho, B. S.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

Rothschild, A.

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

A. Rothschild, Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys. 95(11), 6374–6380 (2004).
[CrossRef]

Rubin, M.

Sberveglieri, G.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

Sberveglieri, V.

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

Schauer, C. L.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Schulze, M.

A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
[CrossRef] [PubMed]

Schwenzer, B.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Sergeenko, S. A.

S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
[CrossRef]

Shao, S.

S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
[CrossRef] [PubMed]

Shvets, A. V.

S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
[CrossRef]

Silverman, G.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Simon, U.

M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Solanki, P. R.

P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
[CrossRef]

Solomakha, V. N.

S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
[CrossRef]

Sotzing, G. A.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Stefanov, P. K.

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Stevenson, M.

Stewart, G.

G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).

Stitzel, S. E.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Strano, M. S.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

Stucky, G. D.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

Sumida, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

Swensen, J. S.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Tang, X.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

Tao, S.

Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009).
[CrossRef] [PubMed]

Thursby, G.

Toghiani, H.

Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009).
[CrossRef] [PubMed]

Tuller, H. L.

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

Urade, V. N.

V. N. Urade, H. W. Hillhouse, “Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure,” J. Phys. Chem. B 109(21), 10538–10541 (2005).
[CrossRef] [PubMed]

Vaid, T. P.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Van de Walle, C. G.

H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012).
[CrossRef]

van Lith, J.

A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
[CrossRef] [PubMed]

Vomiero, A.

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

von Rottkay, K.

Walt, D. R.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

Wang, J.

M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
[CrossRef]

Wang, L.

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Wei, T.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

Wei, X.

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

Xiao, H.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
[CrossRef]

Xu, Y.

Z. Gu, Y. Xu, K. Gao, “Optical fiber long-period grating with solgel coating for gas sensor,” Opt. Lett. 31(16), 2405–2407 (2006).
[CrossRef] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Xu, Z.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

Yamazoe, N.

N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B Chem. 108, 2–14 (2005).

N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B Chem. 5, 7–19 (1991).

Yan, Q.

Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009).
[CrossRef] [PubMed]

Yang, M.

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[CrossRef] [PubMed]

M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
[CrossRef]

Yang, P.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

Yaremov, P. S.

S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Zhang, J.

J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical,” Opt. Express 16(11), 8317–8323 (2008).
[CrossRef] [PubMed]

J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
[CrossRef]

Zhang, L.

Zhang, P.

Zhao, D.

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

Zheng, H.

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

Zhou, K.

Adv. Funct. Mater.

R. S. Devan, R. A. Patil, J.-H. Lin, Y.-R. Ma, “One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications,” Adv. Funct. Mater. 22(16), 3326–3370 (2012).
[CrossRef]

H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, “Nanostructured tungsten oxide – properties, synthesis, and applications,” Adv. Funct. Mater. 21(12), 2175–2196 (2011).
[CrossRef]

AIP Conf. Proc.

R. Landauer, “Electrical conductivity in inhomogeneous media,” AIP Conf. Proc. 40, 2–45 (1978).
[CrossRef]

Anal. Chem.

X. Tang, K. Remmel, X. Lan, J. Deng, H. Xiao, J. Dong, “Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement,” Anal. Chem. 81(18), 7844–7848 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

H. Peelaers, E. Kioupakis, C. G. Van de Walle, “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO[sub 2],” Appl. Phys. Lett. 100(1), 011914 (2012).
[CrossRef]

Chem. Mater.

J. Zhang, M. Luo, H. Xiao, J. Dong, “Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers,” Chem. Mater. 18(1), 4–6 (2006).
[CrossRef]

P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chem. Mater. 11(10), 2813–2826 (1999).
[CrossRef]

Chem. Rev.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, “Cross-reactive chemical sensor arrays,” Chem. Rev. 100(7), 2595–2626 (2000).
[CrossRef] [PubMed]

IEEE Sens. J.

Y. H. Kim, M. J. Kim, B. S. Rho, M.-S. Park, J.-H. Jang, B. H. Lee, “Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode,” IEEE Sens. J. 11(6), 1423–1426 (2011).
[CrossRef]

Int. J. Appl. Ceram. Tec.

S. Akbar, P. Dutta, C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tec. 3(4), 302–311 (2006).
[CrossRef]

J. Appl. Phys.

M. Yang, J. Dai, X. Li, J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” J. Appl. Phys. 108(3), 033102 (2010).
[CrossRef]

A. Rothschild, Y. Komem, “The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors,” J. Appl. Phys. 95(11), 6374–6380 (2004).
[CrossRef]

J. Mater. Chem.

X. Tang, J. Provenzano, Z. Xu, J. Dong, H. Duan, H. Xiao, “Acidic ZSM-5 zeolite-coated long period fiber grating for optical sensing of ammonia,” J. Mater. Chem. 21(1), 181–186 (2011).
[CrossRef]

J. Mol. Catal. Chem.

E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, G. Sberveglieri, “Metal oxide nanowires: Preparation and application in gas sensing,” J. Mol. Catal. Chem. 305(1–2), 170–177 (2009).
[CrossRef]

J. Phys. Chem. B

V. N. Urade, H. W. Hillhouse, “Synthesis of thermally stable highly ordered nanoporous tin oxide thin films with a 3D face-centered orthorhombic nanostructure,” J. Phys. Chem. B 109(21), 10538–10541 (2005).
[CrossRef] [PubMed]

Langmuir

B. Schwenzer, L. Wang, J. S. Swensen, A. B. Padmaperuma, G. Silverman, R. Korotkov, D. J. Gaspar, “Tuning the optical properties of mesoporous TiO2 films by nanoscale engineering,” Langmuir 28(26), 10072–10081 (2012).
[CrossRef] [PubMed]

Mat. Sci. Eng. B Solid.

G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?” Mat. Sci. Eng. B Solid. 139(1), 1–23 (2007).
[CrossRef]

MRS Bull.

D. S. Ginley, C. Bright, “Transparent conducting oxides,” MRS Bull. 25(08), 15–18 (2000).
[CrossRef]

Nano Lett.

I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, “Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers,” Nano Lett. 6(9), 2009–2013 (2006).
[CrossRef] [PubMed]

Nanoscale

S. Shao, M. Dimitrov, N. Guan, R. Köhn, “Crystalline nanoporous metal oxide thin films by post-synthetic hydrothermal transformation: SnO2 and TiO2,” Nanoscale 2(10), 2054–2057 (2010).
[CrossRef] [PubMed]

Nanotechnology

A. Lassesson, M. Schulze, J. van Lith, S. A. Brown, “Tin oxide nanocluster hydrogen and ammonia sensors,” Nanotechnology 19(1), 015502 (2008).
[CrossRef] [PubMed]

NPG Asia Mater.

P. R. Solanki, A. Kaushik, V. V. Agrawal, B. D. Malhotra, “Nanostructured metal oxide-based biosensors,” NPG Asia Mater. 3(1), 17–24 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B Chem.

N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B Chem. 108, 2–14 (2005).

N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sens. Actuators B Chem. 5, 7–19 (1991).

G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sens. Actuators B Chem. 107, 209–232 (2005).

X. Wei, T. Wei, J. Li, X. Lan, H. Xiao, Y. S. Lin, “Strontium cobaltite coated optical sensors for high temperature carbon dioxide detection,” Sens. Actuators B Chem. 144, 260–266 (2010).

G. Stewart, F. A. Muhammad, B. Culshaw, “Sensitivity improvement for evanescent-wave gas sensors,” Sens. Actuators B Chem. 11, 521–524 (1993).

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B Chem. 108, 508–514 (2005).

A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanov, P. A. Atanasov, E. I. Karakoleva, A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sens. Actuators B Chem. 146, 331–336 (2010).

Sensors

A. Ponzoni, E. Comini, I. Concina, M. Ferroni, M. Falasconi, E. Gobbi, V. Sberveglieri, G. Sberveglieri, “Nanostructured metal oxide gas sensors, a survey of applications carried out at SENSOR Lab, Brescia (Italy) in the security and food quality fields,” Sensors 12(12), 17023–17045 (2012).
[CrossRef] [PubMed]

Small

M. E. Franke, T. J. Koplin, U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small 2(1), 36–50 (2006).
[CrossRef] [PubMed]

Talanta

Q. Yan, S. Tao, H. Toghiani, “Optical fiber evanescent wave absorption spectrometry of nanocrystalline tin oxide thin films for selective hydrogen sensing in high temperature gas samples,” Talanta 77(3), 953–961 (2009).
[CrossRef] [PubMed]

Theor. Exp. Chem.

S. A. Sergeenko, P. S. Yaremov, V. N. Solomakha, A. V. Shvets, “Effect of synthesis conditions on the structure and sorption properties of films based on mesoporous tin dioxide,” Theor. Exp. Chem. 46(3), 197–202 (2010).
[CrossRef]

Other

Z.-M. Qi, Z. Hao-shen, and I. Honma, “Mesostructured and mesoporous metal oxide films for optical waveguide-based gas sensor application,” Sensors 2004, Proceedings of IEEE (2004), vol. 1313, pp. 1316–1319.

L. Rosenfeld, Theory of Electrons, Vol. 1 in Selected Topics in Modern Physics (North-Holland, 1951), pp. xv, 119 p.

T. Chuen-Lin, C. Tzu-Chung, C. Chun-Chia, C. Yu-Zong, and L. Wen-Fung, “Tuning sensitivity of liquid refractive index sensor based on side-polishing fiber Bragg gratings,” in Optical Fiber Communication and Optoelectronic Exposition and Conference, 2008. AOE 2008. Asia (2008), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A: Schematic of D-shaped fiber coated with nanostructured SnO2, with an in-fiber Brag Grating. B-C: Simulations of the power distributions of the fundamental mode for a coating refractive index of 1.5 (index above the value of the core) and 1.461 (Nanostructured SnO2 used for the experiment). D: Simulations of various coating refractive indices and the associated confinement factors as functions of film thickness while maintaining the mode-match condition. The thicknesses are those that maintain the fiber’s neff to its original value. E: The confinement factors as functions of the index difference between the core and the sensing film (Δn = ncore-nfilm) at a coating thickness of 2μm for small film index variations. The above simulation were examined for an operating wavelength of λ = 1.55μm.

Fig. 2
Fig. 2

The refractive indices of various forms of SnO2. Sputtered SnO2 was sputter coated at a thickness of 100nm. SnO2-A is with mole fraction 1:0.008:2:21.74, B with mole fraction 1:0.04:7.71:39.58, and C with mole fraction 1:0.016:2:21.7. The mark labeled “Core Index” is an estimate of the refractive index of the core of the fiber (1.468) and SnO2-B, used to fabricate the sensor, has an estimated refractive index of 1.461 at λ = 1.55μm.

Fig. 3
Fig. 3

A: Cross sectional SEM image of the constructed sensor. B: STEM image of the entire film thickness along with an SEM image (inset) illustrating the FIB lift-out. C: Bright field TEM image illustrating an average SnO2 grain size of approximately 10nm. D: High resolution TEM imaging of the crystal structure of SnO2 with FFT inset indexed to the [1-1-1] zone axis of the casserite crystal structure.

Fig. 4
Fig. 4

A: Experimental schematic. B: FBG resonant peak response of the sensor at room temperature to 10% NH3. No shift in the resonance peak is observed, indicating that there is a not a significant refractive index response. C: Transmission analysis of the response of the sensor at room temperature to 10% NH3, indicating a strong loss in the transmitted power. D: The total absorption coefficient of the integrated component as a function of temperature.

Metrics