D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).

[CrossRef]

M. Piliarik, H. Sipova, P. Kvasnicka, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).

[CrossRef]
[PubMed]

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).

[CrossRef]
[PubMed]

R. Antos and M. Veis, “Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals,” Opt. Express 18, 27511–27524 (2010).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “Dna biosensors and microarrays,” Chem. Rev. 108, 109–139 (2008).

[CrossRef]

N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).

[CrossRef]
[PubMed]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).

[CrossRef]

K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).

[CrossRef]

K. Watanabe, “Numerical integration schemes used on the differential theory for anisotropic gratings,” J. Opt. Soc. Am. A 19, 2245–2252 (2002).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81, 316–328 (2002).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Suraface plamson resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

[CrossRef]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).

[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “Dna biosensors and microarrays,” Chem. Rev. 108, 109–139 (2008).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81, 316–328 (2002).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Suraface plamson resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

[CrossRef]

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).

[CrossRef]

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).

[CrossRef]

M. Piliarik, H. Sipova, P. Kvasnicka, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).

[CrossRef]
[PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Suraface plamson resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

[CrossRef]

A. D. Taylor, J. Ladd, J. Homola, and S. Jiang, Surface Plasmon Resonance (SPR) Sensors for the Detection of Bacterial Pathogens (Springer, 2008), pp. 83–108.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).

[CrossRef]

A. D. Taylor, J. Ladd, J. Homola, and S. Jiang, Surface Plasmon Resonance (SPR) Sensors for the Detection of Bacterial Pathogens (Springer, 2008), pp. 83–108.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

A. D. Taylor, J. Ladd, J. Homola, and S. Jiang, Surface Plasmon Resonance (SPR) Sensors for the Detection of Bacterial Pathogens (Springer, 2008), pp. 83–108.

A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “Dna biosensors and microarrays,” Chem. Rev. 108, 109–139 (2008).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).

[CrossRef]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81, 316–328 (2002).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81, 316–328 (2002).

[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).

[CrossRef]

K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81, 316–328 (2002).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “Dna biosensors and microarrays,” Chem. Rev. 108, 109–139 (2008).

[CrossRef]

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).

[CrossRef]

A. D. Taylor, J. Ladd, J. Homola, and S. Jiang, Surface Plasmon Resonance (SPR) Sensors for the Detection of Bacterial Pathogens (Springer, 2008), pp. 83–108.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Suraface plamson resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

[CrossRef]

A. Sassolas, B. D. Leca-Bouvier, and L. J. Blum, “Dna biosensors and microarrays,” Chem. Rev. 108, 109–139 (2008).

[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).

[CrossRef]

D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/fe/au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).

[CrossRef]

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).

[CrossRef]

L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).

[CrossRef]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24, 2880–2890 (2007).

[CrossRef]

P. Lalanne, “Convergence performance of the coupled-wave and the differential methods for thin gratings,” J. Opt. Soc. Am. A 14, 1583–1591 (1997).

[CrossRef]

P Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

E. Popov and M. Neviere, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

K. Watanabe, R. Petit, and M. Neviere, “Differential theory of gratings made of anisotropic materials,” J. Opt. Soc. Am. A 19, 325–334 (2002).

[CrossRef]

K. Watanabe, “Numerical integration schemes used on the differential theory for anisotropic gratings,” J. Opt. Soc. Am. A 19, 2245–2252 (2002).

[CrossRef]

P. Boyer, E. Popov, M. Neviere, and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” J. Opt. Soc. Am. A 21, 2146–2153 (2004).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications,” Opt. Commun. 245, 355–361 (2005).

[CrossRef]

N. Bonod, E. Popov, and M. Neviere, “Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect,” Opt. Commun. 244, 389–398 (2005).

[CrossRef]

B. Chernov, M. Neviere, and E. Popov, “Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings,” Opt. Commun. 194, 289–297 (2001).

[CrossRef]

P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, “Normal vector method for the RCWA with automated vector field generation,” Opt. Express 16, 17295–17301 (2008).

[CrossRef]
[PubMed]

R. Antos, “Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures,” Opt. Express 17, 7269–7274 (2009).

[CrossRef]
[PubMed]

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010).

[CrossRef]
[PubMed]

R. Antos and M. Veis, “Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals,” Opt. Express 18, 27511–27524 (2010).

[CrossRef]

M. Piliarik, H. Sipova, P. Kvasnicka, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).

[CrossRef]
[PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).

[CrossRef]
[PubMed]

N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).

[CrossRef]
[PubMed]

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).

[CrossRef]

R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

C. Nylander, B. Liedberg, and T. Lind, “Gas-detection by means of surface-plasmon resonance,” Sens. Actuators 3, 79–88 (1982).

[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Suraface plamson resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).

[CrossRef]

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85, 219–226 (2002).

[CrossRef]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81, 316–328 (2002).

[CrossRef]

A. D. Taylor, J. Ladd, J. Homola, and S. Jiang, Surface Plasmon Resonance (SPR) Sensors for the Detection of Bacterial Pathogens (Springer, 2008), pp. 83–108.