Abstract

We present a highly efficient polarization splitter and rotator (PSR), fabricated using 248 nm deep ultraviolet lithography on a silicon-on-insulator substrate. The PSR is based on a double-etched directional coupler with a length of 27 µm. The fabricated PSR yields a TM-to-TE conversion loss better than 0.5 dB and TE insertion loss better than 0.3 dB, with an ultra-low crosstalk (−20 dB) in the wavelength regime 1540-1570 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
    [CrossRef]
  2. M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [CrossRef]
  3. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  4. D. Dai, J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [CrossRef] [PubMed]
  5. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  6. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008).
    [CrossRef] [PubMed]
  7. J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19(14), 13063–13072 (2011).
    [CrossRef] [PubMed]
  8. Y. Ding, L. Liu, C. Peucheret, H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
    [CrossRef] [PubMed]
  9. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  10. L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
    [CrossRef]
  11. L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [CrossRef] [PubMed]
  12. Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
    [CrossRef]
  13. L. Liu, Y. Ding, K. Yvind, J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [CrossRef] [PubMed]
  14. D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
    [CrossRef]
  15. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
    [CrossRef]
  16. Z. Wang, D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [CrossRef]
  17. X. Xiong, C.-L. Zou, X.-F. Ren, G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21(14), 17097–17107 (2013).
    [CrossRef] [PubMed]
  18. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [CrossRef]

2013 (2)

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

X. Xiong, C.-L. Zou, X.-F. Ren, G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21(14), 17097–17107 (2013).
[CrossRef] [PubMed]

2012 (4)

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (2)

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

2008 (2)

2007 (3)

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Absil, P.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

Baehr-Jones, T.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Baets, R.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

Bowers, J. E.

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Cao, T.

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

Cao, Y.

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

Chen, L.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Chen, S.

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

J. Zhang, H. Zhang, S. Chen, M. Yu, G. Q. Lo, D. L. Kwong, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19(14), 13063–13072 (2011).
[CrossRef] [PubMed]

Chen, Y.-K.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Dai, D.

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Ding, Y.

Doerr, C. R.

L. Chen, C. R. Doerr, Y.-K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Dumon, P.

Fedeli, J.-M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Fei, Y.

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

Fukuda, H.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Guo, G.-C.

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Hakansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Hochberg, M.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Itabashi, S. I.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Kwong, D. L.

Liow, T.-Y.

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Liu, L.

Lo, G. Q.

Lo, P. G.-Q.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Ou, H.

Peucheret, C.

Pinguet, T.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Prather, D.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Ren, X.-F.

Roelkens, G.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Selvaraja, S.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Taillaert, D.

Tsuchizawa, T.

Van Thourhout, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

Verheyen, P.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

Vermeulen, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xiong, X.

Yamada, K.

Yu, M.

Yvind, K.

Zhang, H.

Zhang, J.

Zhang, L.

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

Zou, C.-L.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. Chen, C. R. Doerr, Y.-K. Chen, T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett. 22(23), 1744–1746 (2010).
[CrossRef]

Y. Fei, L. Zhang, T. Cao, Y. Cao, S. Chen, “High efficiency broadband polarization converter based on tapered slot waveguide,” IEEE Photon. Technol. Lett. 25(9), 879–881 (2013).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. Van Thourhout, G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24(6), 482–484 (2012).
[CrossRef]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” IEEE Photon. Technol. Lett. 24(22), 2031–2034 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (4)

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[CrossRef]

M. Hochberg, T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[CrossRef]

F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, H. I. Smith, “Polarization transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic structure of the proposed PSR with significant geometric parameters noted.

Fig. 2
Fig. 2

Effective indices at the coupling section vs. wavelength.

Fig. 3
Fig. 3

Simulation results for the intensity of light when launching (a) TE mode and (b) TM mode as the input.

Fig. 4
Fig. 4

Total electrical field amplitude (|(E)|) profile as the input TM0 field travels through the PSR

Fig. 5
Fig. 5

Polarization conversion loss vs. geometry parameter variation. (the red dots represent the simulated polarization conversion losses, and the blue curves represent the fits from these dots)

Fig. 6
Fig. 6

Optical micrograph of the fabricated devices (a) PSR with two calibration structures (b) PSR.

Fig. 7
Fig. 7

Spectral response of the TE and TM SPGC loops.

Fig. 8
Fig. 8

Measured and simulated spectra of the PSR with input and output grating loss normalized showing (a) conversion loss and (b) crosstalk.

Metrics