Abstract

We propose, by means of numerical simulations, a simple method to design a non-uniform standard single mode fiber to generate spectral broadening in the form of “ad-hoc” chosen peaks from dispersive waves. The controlled multi-peak generation is possible by an on/off switch of Cherenkov radiation, achieved by tailoring the fiber dispersion when decreasing the cladding diameter by segments. The interplay between the fiber dispersion and the soliton self-frequency shift results in discrete peaks of efficiently emitted Cherenkov radiation from low order solitons, despite the small amount of energy contained in a pulse. These spectra are useful for applications that demand low power bell-shaped pulses at specific carrier wavelengths.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [CrossRef]
  3. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
    [CrossRef] [PubMed]
  4. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  5. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [CrossRef] [PubMed]
  6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  8. S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
    [CrossRef]
  9. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
    [CrossRef] [PubMed]
  10. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [CrossRef]
  11. C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
    [CrossRef]
  12. A. V. Gorbach, D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [CrossRef]
  13. G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.
  14. A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
    [CrossRef]
  15. S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. Martjn de Sterke, B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19, 17766–17773 (2011).
    [CrossRef] [PubMed]
  16. N. Akhmediev, M Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  17. C. Milián, D. V. Skryabin, A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
    [CrossRef] [PubMed]
  18. R. Zhang, X. Zhang, D. Meiser, H. Giessen, “Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber,” Opt. Express 12, 5840–5849 (2004).
    [CrossRef] [PubMed]
  19. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30, 1980–1982 (2005).
    [CrossRef] [PubMed]
  20. F. Biancalana, D. V. Skryabin, A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  21. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).
  22. J. C. Travers, J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
    [CrossRef] [PubMed]
  23. S. Pricking, H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
    [CrossRef] [PubMed]
  24. C. Milián, A. Ferrando, D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
    [CrossRef]
  25. R. Zhang, J. Teipel, X. Zhang, D. Nau, H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquids,” Opt. Express 12, 1700–1707 (2004).
    [CrossRef] [PubMed]
  26. H. J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching,” J. Mater. Sci. Technol. 28, 308–312 (2012).
    [CrossRef]
  27. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17, 19486–19500 (2009).
    [CrossRef] [PubMed]
  28. J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
    [CrossRef] [PubMed]
  29. E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
    [CrossRef]
  30. A. M. Smith, M. C. Mancini, S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
    [CrossRef] [PubMed]
  31. Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
    [CrossRef] [PubMed]
  32. J. M. Huntley, T. Widjanarko, P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
    [CrossRef]
  33. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  34. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
    [CrossRef] [PubMed]
  35. C. Milián, D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
    [CrossRef]
  36. www.optiwave.com .
  37. D. V. Skryabin, A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
    [CrossRef]
  38. S. Roy, S. K. Bhadra, G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).
  39. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  40. A. V. Gorbach, D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
    [CrossRef] [PubMed]
  41. A. V. Gorbach, D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
    [CrossRef]
  42. B. Metzger, A. Steinmann, F. Hoos, S. Pricking, H. Giessen, “Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses,” Opt. Lett. 35, 3961–3963 (2010).
    [CrossRef] [PubMed]
  43. J. N. Farmer, C. I. Miyake, “Method and apparatus for optical coherence tomography with a multispectral laser source,” U.S. Patent 6,538,817 filed October 17, 2000, and issued March 25, 2003.
  44. J. M. Huntley, P. D. Ruiz, T. Widjanarko, “Apparatus for the absolute measurement of two dimensional optical path distributions using interferometry,” U.S. Patent 2,011,010,092 filed July 20, 2010, and issued July 12, 2012.
  45. N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
    [CrossRef] [PubMed]

2013

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

2012

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
[CrossRef]

H. J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching,” J. Mater. Sci. Technol. 28, 308–312 (2012).
[CrossRef]

C. Milián, A. Ferrando, D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[CrossRef]

2011

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. Martjn de Sterke, B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19, 17766–17773 (2011).
[CrossRef] [PubMed]

C. Milián, D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

S. Roy, S. K. Bhadra, G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

2010

J. M. Huntley, T. Widjanarko, P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[CrossRef]

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
[CrossRef] [PubMed]

S. Pricking, H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[CrossRef] [PubMed]

B. Metzger, A. Steinmann, F. Hoos, S. Pricking, H. Giessen, “Compact laser source for high-power white-light and widely tunable sub 65 fs laser pulses,” Opt. Lett. 35, 3961–3963 (2010).
[CrossRef] [PubMed]

2009

2008

2007

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

A. V. Gorbach, D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

2006

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2005

D. V. Skryabin, A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30, 1980–1982 (2005).
[CrossRef] [PubMed]

2004

2003

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

2002

2000

T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

1995

N. Akhmediev, M Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

1986

Afshar V., S.

Agrawal, G. P.

S. Roy, S. K. Bhadra, G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Akers, W. J.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

Akhmediev, N.

N. Akhmediev, M Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Andersen, T. V.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Arevalillo-Herráez, M.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

Audry, L.

Bang, O.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
[CrossRef]

Barviau, B.

Berezin, M. Y.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

Bhadra, S. K.

S. Roy, S. K. Bhadra, G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Biancalana, F.

F. Biancalana, D. V. Skryabin, A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Brezinski, M. E

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Calcagni, A.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

Cheng, C.

C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
[CrossRef]

Cimalla, P.

Claridge, E.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cordeiro, C. M. B.

Cuevas, M.

Cumberland, B. A.

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Dekker, S. A.

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

Everdell, N. L.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Farmer, J. N.

J. N. Farmer, C. I. Miyake, “Method and apparatus for optical coherence tomography with a multispectral laser source,” U.S. Patent 6,538,817 filed October 17, 2000, and issued March 25, 2003.

Ferrando, A.

C. Milián, A. Ferrando, D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[CrossRef]

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

C. Milián, D. V. Skryabin, A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[CrossRef] [PubMed]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

George, A. K.

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Gibson, J.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Giessen, H.

González, N.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

Gorbach, A. V.

V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Gordon, J. P.

Gris-Sánchez, I.

Hebden, J.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Hernández, V.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

Hoos, F.

Huntley, J. M.

J. M. Huntley, T. Widjanarko, P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[CrossRef]

J. M. Huntley, P. D. Ruiz, T. Widjanarko, “Apparatus for the absolute measurement of two dimensional optical path distributions using interferometry,” U.S. Patent 2,011,010,092 filed July 20, 2010, and issued July 12, 2012.

Iv, Q.

C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
[CrossRef]

Jakobsen, C.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Johansen, J.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Judge, A. C.

Karlsson, M

N. Akhmediev, M Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Kbashi, H. J.

H. J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching,” J. Mater. Sci. Technol. 28, 308–312 (2012).
[CrossRef]

Knight, J. C.

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. Martjn de Sterke, B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19, 17766–17773 (2011).
[CrossRef] [PubMed]

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. Martin Man, P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
[CrossRef]

Koch, E.

Kudlinski, A.

Kuhlmey, B. T.

Lareau, E.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Larsen, C.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Le Lan, J.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Lelek, M.

Lesage, F.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Loza, P.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

Mägi, E. C.

Mancini, M. C.

A. M. Smith, M. C. Mancini, S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[CrossRef] [PubMed]

Martijn de Sterke, C.

Martin Man, T.-P.

Martjn de Sterke, C.

Mehner, M.

Meiser, D.

Metzger, B.

Milián, C.

C. Milián, A. Ferrando, D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[CrossRef]

C. Milián, D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

C. Milián, D. V. Skryabin, A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[CrossRef] [PubMed]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

Miyake, C. I.

J. N. Farmer, C. I. Miyake, “Method and apparatus for optical coherence tomography with a multispectral laser source,” U.S. Patent 6,538,817 filed October 17, 2000, and issued March 25, 2003.

Moller, U.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Moltó, G.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

Monro, T. M.

Moselund, P. M.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Mussot, A.

Nau, D.

Nguyen, D.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Nie, S.

A. M. Smith, M. C. Mancini, S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[CrossRef] [PubMed]

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Ortigosa-Blanch, A.

Ou, Y.

C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
[CrossRef]

Pant, R.

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Popov, S. V.

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Pouliot, P.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Pricking, S.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Roy, S.

S. Roy, S. K. Bhadra, G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

Ruiz, P. D.

J. M. Huntley, T. Widjanarko, P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[CrossRef]

J. M. Huntley, P. D. Ruiz, T. Widjanarko, “Apparatus for the absolute measurement of two dimensional optical path distributions using interferometry,” U.S. Patent 2,011,010,092 filed July 20, 2010, and issued July 12, 2012.

Rulkov, A. B.

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Sawan, M.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Skryabin, D. V.

C. Milián, A. Ferrando, D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[CrossRef]

C. Milián, D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

C. Milián, D. V. Skryabin, A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34, 2096–2098 (2009).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

D. V. Skryabin, A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Skryabin, V.

V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

Smith, A. M.

A. M. Smith, M. C. Mancini, S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[CrossRef] [PubMed]

Sørensen, S. T.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Steinmann, A.

Stone, J. M.

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Styles, I. B.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Taylor, J. R.

J. C. Travers, J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[CrossRef] [PubMed]

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Teipel, J.

Thomsen, C. L.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Torres-Gómez, I.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

Travers, J. C.

J. C. Travers, J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[CrossRef] [PubMed]

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Wadsworth, W. J.

Walther, J.

Wang, S. T.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

Wang, Y.

C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
[CrossRef]

Widjanarko, T.

J. M. Huntley, T. Widjanarko, P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[CrossRef]

J. M. Huntley, P. D. Ruiz, T. Widjanarko, “Apparatus for the absolute measurement of two dimensional optical path distributions using interferometry,” U.S. Patent 2,011,010,092 filed July 20, 2010, and issued July 12, 2012.

Yulin, A. V.

D. V. Skryabin, A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Zacarés, M.

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

Zhang, R.

Zhang, W. Q.

Zhang, X.

Zhegalova, N. G.

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Milián, D. V. Skryabin, “Nonlinear switching in arrays of semiconductor on metal photonic wires,” Appl. Phys. Lett. 98, 111104 (2011).
[CrossRef]

Curr. Sci.

S. Roy, S. K. Bhadra, G. P. Agrawal, “Dispersive wave generation in supercontinuum process inside nonlinear microstructured fibre,” Curr. Sci. 100, 321–342 (2011).

J. Biomed. Opt.

E. Lareau, F. Lesage, P. Pouliot, D. Nguyen, J. Le Lan, M. Sawan, “Multichannel wearable system dedicated for simultaneous electroencephalography/near-infrared spectroscopy real-time data acquisitions,” J. Biomed. Opt. 16, 096014 (2011).
[CrossRef]

Q. Cao, N. G. Zhegalova, S. T. Wang, W. J. Akers, M. Y. Berezin, “Multispectral imaging in the extended near-infrared window based on endogenous chromophores,” J. Biomed. Opt. 18, 101318 (2013).
[CrossRef] [PubMed]

J. Mater. Sci. Technol.

H. J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching,” J. Mater. Sci. Technol. 28, 308–312 (2012).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

J. M. Huntley, T. Widjanarko, P. D. Ruiz, “Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions,” Meas. Sci. Technol. 21, 075304 (2010).
[CrossRef]

Nat. Nanotechnol.

A. M. Smith, M. C. Mancini, S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4, 710–711 (2009).
[CrossRef] [PubMed]

Nat. Photonics

A. V. Gorbach, D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Nature

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef] [PubMed]

Neoplasia

J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2, 9–25 (2000).
[CrossRef] [PubMed]

Opt. Express

R. Zhang, J. Teipel, X. Zhang, D. Nau, H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquids,” Opt. Express 12, 1700–1707 (2004).
[CrossRef] [PubMed]

R. Zhang, X. Zhang, D. Meiser, H. Giessen, “Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber,” Opt. Express 12, 5840–5849 (2004).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, “Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers,” Opt. Express 16, 4858–4865 (2008).
[CrossRef] [PubMed]

S. A. Dekker, A. C. Judge, R. Pant, I. Gris-Sánchez, J. C. Knight, C. Martjn de Sterke, B. J. Eggleton, “Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss,” Opt. Express 19, 17766–17773 (2011).
[CrossRef] [PubMed]

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010).
[CrossRef] [PubMed]

S. Pricking, H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[CrossRef] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17, 19486–19500 (2009).
[CrossRef] [PubMed]

Opt. Express.

S. T. Sørensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express. 20, 10635–10645 (2012).
[CrossRef]

Opt. Laser Technol.

C. Cheng, Y. Wang, Y. Ou, Q. Iv, “Enhanced red-shifted radiation by pulse trapping in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Laser Technol. 44, 954–959 (2012).
[CrossRef]

Opt. Lett.

Opt.Express

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt.Express 15, 13203–13211 (2007).

Phys. Rev. A

N. Akhmediev, M Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Phys. Rev. E

D. V. Skryabin, A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Proc. SPIE

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez, M. Zacarés, I. Torres-Gómez, V. Hernández, “Designing supercontinuum spectra using Grid technology,” Proc. SPIE 7839, 78390W (2010).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic cristal fibers,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

V. Skryabin, A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[CrossRef]

Rev. Sci. Instrum.

N. L. Everdell, I. B. Styles, A. Calcagni, J. Gibson, J. Hebden, E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef] [PubMed]

Science

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Other

G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A. Ferrando, “Optimization of supercontinuum spectrum using genetic algorithms on service-oriented grids,” in Proceedings of the 3rd Iberian Grid Infrastructure Conference (IberGrid, 2009), pp. 137–147.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

www.optiwave.com .

J. N. Farmer, C. I. Miyake, “Method and apparatus for optical coherence tomography with a multispectral laser source,” U.S. Patent 6,538,817 filed October 17, 2000, and issued March 25, 2003.

J. M. Huntley, P. D. Ruiz, T. Widjanarko, “Apparatus for the absolute measurement of two dimensional optical path distributions using interferometry,” U.S. Patent 2,011,010,092 filed July 20, 2010, and issued July 12, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Nonlinear coefficient, (b) GVD, and (c) third order dispersion (TOD) for the different cladding diameters: d = 5.4 (blue), 6.1 (black), 7.1 (red) and 8.3 μm (magenta). The corresponding values of λzGVD are: 1035, 1070, 1105, and 1140 nm (see b). (d) Dependence of the cladding diameter, d, on λzGVD. Inset shows a schematic side view of the non-uniform fiber, in which light propagation occurs from left to right [see Fig. 3(a)]. Diameters, d, and lengths, L, of the different regions are chosen as: d1 = 5.4, d2 = 6.1, d3 = 7.1, d4 = 8.3 μm; L1 = 35, L2 = 40, L3 = 55, L4 = 90 cm.

Fig. 2
Fig. 2

(a) Phase matching between the fundamental soliton (straight line) and the DWs (curves), and (b) dependence of λCh on λs in the decreasing cladding diameter SMF with d1 = 5.4 (blue), d2 = 6.1 (black), d3 = 7.1 (red), and d4 = 8.3 μm (magenta). Dots indicate the corresponding Cherenkov radiation wavelength, λCh, and dashed lines mark the soliton central wavelength, λs. The four cases considered here correspond to the distances at which the soliton enters a new SMF segment [see Fig. 3(a)].

Fig. 3
Fig. 3

(a) Spectral and (b) temporal evolution of an input pulse at λ0 = 1060 nm with P0 = 10 kW and a width of 65 fs (FWHM). The shifting λzGVD (initially at 1035 nm) is marked by the solid black line in (a) and the vertical dashed correspond to the λCh predicted by Eq. (3): 958 (blue), 1002 (black), 1048 (red) and 1086 nm (magenta). (c) Evolution of the soliton order, N, for each fiber segment of length Lj. The value of N is approximately the same for both solitons resulting from fission by the end of the last segment, L4 (both N(z) lines overlap).

Fig. 4
Fig. 4

XFROG traces, ∑(ν = ω/2π, T), for the output field (z = 2.1 m) of (a) Fig. 3(a) and (b) Fig. 3(b). Horizontal white lines mark the pump.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A z = i q 2 β q q ! [ i T ] q A + i γ A + R ( T ) | A ( z , T T ) | 2 d T ,
d ( μ m ) 8.6434 × 10 5 λ z G V D 2 ( n m ) 1.5958 × 10 1 λ z G V D ( n m ) + 77.9036 ,
λ z G V D ( z ) λ s [ 1 + λ s 12 π c δ 3 τ ] 1 ,
λ Ch ( δ 3 ) [ 1 + 4 δ 3 2 ( 2 N 1 ) 2 4 π δ 3 τ c + 1 λ s ] 1 ,
δ 3 π c τ [ 1 λ C h 1 λ s ] + π 2 c 2 τ 2 [ 1 λ C h 1 λ s ] 2 [ 2 N 1 ] 2 2 [ 2 N 1 ] 2 ,

Metrics