Abstract

This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.A. Benton, V.M. Bove, Holographic Imaging (Wiley-Interscience, 2008), 1.
    [CrossRef]
  2. H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell System Technical Journal 48, 2909–2949 (1969).
    [CrossRef]
  3. Michael Klug, Mark Holzbach, Alejandro Ferdman, “Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms,” (2001). US patent 6330088 B1, Dec. 11, 2001.
  4. David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).
  5. Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.
  6. Michael J. Kidger, Fundamental Optical Design (Society of Photo Optical, 2002).
  7. Equation (2) is written in the square hogel form.
  8. Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
    [CrossRef] [PubMed]
  9. David Brotherton-Ratcliffe, Florian Michael Robert Vergnes, Alexey Rodin, Mikhail Grichine, “Holographic printer,” (2005). US patent 6930811 B2, Aug. 16, 2005.
  10. Equation (6) is written for the case when the speed of the material is the same in each direction.
  11. H.I. Bjelkhagen, “Silver Halide Recording Materials for Holography and Their Processing,” Springer Series in Optical Sciences, Vol. 66(Springer-Verlag, Heidelberg, New York1993).
  12. Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
    [CrossRef]
  13. Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
    [CrossRef]
  14. Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
    [CrossRef]
  15. Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
    [CrossRef]
  16. H.J. Caulfield, Handbook of Optical Holography (Academic Press, 1980).
  17. The coefficient 2 before root sign takes into account the situation when the acceleration and deceleration are equal.
  18. In our experimental setup we are using 4F optical system to be able to simple modify it for implementing different multi-hogel printing techniques.
  19. Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
    [CrossRef]
  20. Note that, the total exposure time has not changed. However, the time required to record one hogel will depend on the number of simultaneous recorded hogels and will be equal to τM2=d2SPεM2. Therefore, the required waiting time must be increased because of the increased single hogel exposure time. It is impossible to define the changes in the waiting time because it depends on the real exposure time, wavelength, and rigidity of the entire system. As such, in the future, we will not take into account the waiting time changes, which is true for very short exposure times as well as a low M.
  21. Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with Fourier transforming optical components for one step multi-micro-hologram recording using wedge system,” (2012). Russian Patent Application RU 2012127529, July 03, 2012.
  22. Eqs. (15), (17), and (19) are true for the case for the field of view of a synthesized holographic image recorded using the single hogel printing technique and is equal to the field of view of the image recoded using the spatial hogel spectra splitting technology if and only if both designs used the same SLM.
  23. The maximum permissible value of the numerical aperture for the Fourier transforming system containing a large linear field was 0.76.
  24. For simplicity, a SLM with a pixel number equal to N and an aspect ratio of 1:1 is used.
  25. Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with multi aperture Fourier transforming optical components for one step multi-micro-hologram recording,” (2012). Russian Patent Application RU 2012120356, May 17, 2012.
  26. In the above calculations, the exposure time (τ), moving time (tmove), waiting time (twait), and time for scheme shift (tshift) are 0, 10, 50, and 5 ms, respectively. The maximum numerical aperture of the Fourier transforming optical system was set to 0.76.

2013 (2)

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[CrossRef] [PubMed]

2011 (1)

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

2010 (1)

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

1998 (1)

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

1997 (1)

Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
[CrossRef]

1969 (1)

H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell System Technical Journal 48, 2909–2949 (1969).
[CrossRef]

An, Jungkwuen

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[CrossRef] [PubMed]

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Bakanas, Ramunas J.

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

Benton, S.A.

S.A. Benton, V.M. Bove, Holographic Imaging (Wiley-Interscience, 2008), 1.
[CrossRef]

Berneth, Horst

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Bjelkhagen, H.I.

H.I. Bjelkhagen, “Silver Halide Recording Materials for Holography and Their Processing,” Springer Series in Optical Sciences, Vol. 66(Springer-Verlag, Heidelberg, New York1993).

Bove, V.M.

S.A. Benton, V.M. Bove, Holographic Imaging (Wiley-Interscience, 2008), 1.
[CrossRef]

Bovsunovskiy, Ivan V.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with Fourier transforming optical components for one step multi-micro-hologram recording using wedge system,” (2012). Russian Patent Application RU 2012127529, July 03, 2012.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with multi aperture Fourier transforming optical components for one step multi-micro-hologram recording,” (2012). Russian Patent Application RU 2012120356, May 17, 2012.

Brotherton-Ratcliffe, David

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

David Brotherton-Ratcliffe, Florian Michael Robert Vergnes, Alexey Rodin, Mikhail Grichine, “Holographic printer,” (2005). US patent 6930811 B2, Aug. 16, 2005.

Bruder, Friedrich-Karl

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Caulfield, H.J.

H.J. Caulfield, Handbook of Optical Holography (Academic Press, 1980).

Chen, Ni

Choi, Chilsung

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[CrossRef] [PubMed]

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Chung, U-in

Chung, Uni

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Deuber, Francois

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Fcke, Thomas

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Ferdman, Alejandro

Michael Klug, Mark Holzbach, Alejandro Ferdman, “Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms,” (2001). US patent 6330088 B1, Dec. 11, 2001.

Grichine, Mikhail

David Brotherton-Ratcliffe, Florian Michael Robert Vergnes, Alexey Rodin, Mikhail Grichine, “Holographic printer,” (2005). US patent 6930811 B2, Aug. 16, 2005.

Hagen, Rainer

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Hnel, Dennis

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Holzbach, Mark

Michael Klug, Mark Holzbach, Alejandro Ferdman, “Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms,” (2001). US patent 6330088 B1, Dec. 11, 2001.

Holzbach, Mark E.

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Hong, Keehoon

Huang, Qiang

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Jurbergs, David

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Kidger, Michael J.

Michael J. Kidger, Fundamental Optical Design (Society of Photo Optical, 2002).

Kim, Jonghyun

Kim, Sunil

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[CrossRef] [PubMed]

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Klug, Michael

Michael Klug, Mark Holzbach, Alejandro Ferdman, “Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms,” (2001). US patent 6330088 B1, Dec. 11, 2001.

Klug, Michael A.

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Kogelnik, H.

H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell System Technical Journal 48, 2909–2949 (1969).
[CrossRef]

Krylov, Vitaly N.

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
[CrossRef]

Kuchin, Jevgenij

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

Lad, Pankaj

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Latychevskaia, Tatiana Y.

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

Lee, Byoungho

Lee, Hong-Seok

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[CrossRef] [PubMed]

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Mikhailov, Viktor N.

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
[CrossRef]

Morozov, Alexander

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Morozov, Alexander V.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with Fourier transforming optical components for one step multi-micro-hologram recording using wedge system,” (2012). Russian Patent Application RU 2012127529, July 03, 2012.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with multi aperture Fourier transforming optical components for one step multi-micro-hologram recording,” (2012). Russian Patent Application RU 2012120356, May 17, 2012.

Newswanger, Craig

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Nikolskij, Andrej

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

Park, Soon-gi

Pileckas, Julius

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

Putilin, Andrew N.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with multi aperture Fourier transforming optical components for one step multi-micro-hologram recording,” (2012). Russian Patent Application RU 2012120356, May 17, 2012.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with Fourier transforming optical components for one step multi-micro-hologram recording using wedge system,” (2012). Russian Patent Application RU 2012127529, July 03, 2012.

Pyun, Kyungsuk

Keehoon Hong, Soon-gi Park, Jiwoon Yeom, Jonghyun Kim, Ni Chen, Kyungsuk Pyun, Chilsung Choi, Sunil Kim, Jungkwuen An, Hong-Seok Lee, U-in Chung, Byoungho Lee, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21, 14047–14055 (2013).
[CrossRef] [PubMed]

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Rlle, Thomas

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Rodin, Alexey

David Brotherton-Ratcliffe, Florian Michael Robert Vergnes, Alexey Rodin, Mikhail Grichine, “Holographic printer,” (2005). US patent 6930811 B2, Aug. 16, 2005.

Sitton, Robert L.

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Vergnes, Florian Michael Robert

David Brotherton-Ratcliffe, Florian Michael Robert Vergnes, Alexey Rodin, Mikhail Grichine, “Holographic printer,” (2005). US patent 6930811 B2, Aug. 16, 2005.

Walze, Gnther

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Weiser, Marc-Stephan

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Weitzel, K. T.

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
[CrossRef]

Wild, Urs P.

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
[CrossRef]

Yeom, Jiwoon

Zacharovas, Stanislovas J.

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

Bell System Technical Journal (1)

H. Kogelnik, “Couple wave theory for thick hologram gratings,” Bell System Technical Journal 48, 2909–2949 (1969).
[CrossRef]

Opt. Eng. (1)

David Brotherton-Ratcliffe, Stanislovas J. Zacharovas, Ramunas J. Bakanas, Julius Pileckas, Andrej Nikolskij, Jevgenij Kuchin, “Digital holographic printing using pulsed RGB lasers,” Opt. Eng. 50(9), 091307 (2011).

Opt. Express (1)

Proc. SPIE (1)

Viktor N. Mikhailov, K. T. Weitzel, Vitaly N. Krylov, Urs P. Wild, “Pulse hologram recording in dupont’s photopolymer films,” Proc. SPIE 3011, 200–202 (1997).
[CrossRef]

Proceedings of SPIE (3)

Viktor N. Mikhailov, K. T. Weitzel, Tatiana Y. Latychevskaia, Vitaly N. Krylov, Urs P. Wild, “Pulse recording of slanted fringe holograms in dupont photopolymer,” Proceedings of SPIE 3294, 132–135 (1998).
[CrossRef]

Friedrich-Karl Bruder, Francois Deuber, Thomas Fcke, Rainer Hagen, Dennis Hnel, David Jurbergs, Thomas Rlle, Marc-Stephan Weiser, “Reaction-diffusion model applied to high resolution Bayfol HX photopolymer,”Proceedings of SPIE 7619, 76190I(2010).
[CrossRef]

Horst Berneth, Friedrich-Karl Bruder, Thomas Fcke, Rainer Hagen, Dennis Hnel, Thomas Rlle, Gnther Walze, Marc-Stephan Weiser, “Holographic recordings with high beam ratios on improved Bayfol HX photopolymer,”Proceedings of SPIE 8776, 877603 (2013).
[CrossRef]

Other (19)

David Brotherton-Ratcliffe, Florian Michael Robert Vergnes, Alexey Rodin, Mikhail Grichine, “Holographic printer,” (2005). US patent 6930811 B2, Aug. 16, 2005.

Equation (6) is written for the case when the speed of the material is the same in each direction.

H.I. Bjelkhagen, “Silver Halide Recording Materials for Holography and Their Processing,” Springer Series in Optical Sciences, Vol. 66(Springer-Verlag, Heidelberg, New York1993).

Craig Newswanger, Pankaj Lad, Robert L. Sitton, Qiang Huang, Michael A. Klug, Mark E. Holzbach, “Pulsed-laser systems and methods for producing holographic stereograms,” (19-Oct.-2004). US 6806982 B2.

Michael J. Kidger, Fundamental Optical Design (Society of Photo Optical, 2002).

Equation (2) is written in the square hogel form.

H.J. Caulfield, Handbook of Optical Holography (Academic Press, 1980).

The coefficient 2 before root sign takes into account the situation when the acceleration and deceleration are equal.

In our experimental setup we are using 4F optical system to be able to simple modify it for implementing different multi-hogel printing techniques.

Kyungsuk Pyun, Chilsung Choi, Alexander Morozov, Sunil Kim, Jungkwuen An, Hong-seok Lee, Uni Chung, “Integrated Hologram Optical Head for Holographic Printer,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), Optical Society of America (2013), paper DW4A.2.
[CrossRef]

Note that, the total exposure time has not changed. However, the time required to record one hogel will depend on the number of simultaneous recorded hogels and will be equal to τM2=d2SPεM2. Therefore, the required waiting time must be increased because of the increased single hogel exposure time. It is impossible to define the changes in the waiting time because it depends on the real exposure time, wavelength, and rigidity of the entire system. As such, in the future, we will not take into account the waiting time changes, which is true for very short exposure times as well as a low M.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with Fourier transforming optical components for one step multi-micro-hologram recording using wedge system,” (2012). Russian Patent Application RU 2012127529, July 03, 2012.

Eqs. (15), (17), and (19) are true for the case for the field of view of a synthesized holographic image recorded using the single hogel printing technique and is equal to the field of view of the image recoded using the spatial hogel spectra splitting technology if and only if both designs used the same SLM.

The maximum permissible value of the numerical aperture for the Fourier transforming system containing a large linear field was 0.76.

For simplicity, a SLM with a pixel number equal to N and an aspect ratio of 1:1 is used.

Andrew N. Putilin, Alexander V. Morozov, Ivan V. Bovsunovskiy, “Optical device with multi aperture Fourier transforming optical components for one step multi-micro-hologram recording,” (2012). Russian Patent Application RU 2012120356, May 17, 2012.

In the above calculations, the exposure time (τ), moving time (tmove), waiting time (twait), and time for scheme shift (tshift) are 0, 10, 50, and 5 ms, respectively. The maximum numerical aperture of the Fourier transforming optical system was set to 0.76.

S.A. Benton, V.M. Bove, Holographic Imaging (Wiley-Interscience, 2008), 1.
[CrossRef]

Michael Klug, Mark Holzbach, Alejandro Ferdman, “Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms,” (2001). US patent 6330088 B1, Dec. 11, 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram showing the main design of the holographic printer proposed by Stephen Benton.

Fig. 2
Fig. 2

Schematic diagram showing the printing time of the step-by-step method.

Fig. 3
Fig. 3

Principle optical scheme of experimental optical setup used for hogel printing time testing.

Fig. 4
Fig. 4

Schematic diagram showing the operational principle of the bi-wedge based multi-hogel printing setup.

Fig. 5
Fig. 5

Schematic diagram showing the main design of a time sequential multi-hogel system.

Fig. 6
Fig. 6

Predicted printing time for spatial and time sequential multi-hogel systems.

Tables (7)

Tables Icon

Table 1 Common characteristics of photopolymers and silver halide.

Tables Icon

Table 2 Results of the printing speed test.

Tables Icon

Table 3 Comparison of the pulse and step-by-step holographic printing methods.

Tables Icon

Table 4 Table showing dependence of the field of view and required Fourier objective NA on the number of hogels in a hogel cluster for a spatial splitting multi-hogel system.

Tables Icon

Table 5 Possible angular resolutions of a spatial splitting multi-hogel system as a function of the number of hogels in a hogel cluster for a VGA SLM formed by an f -Theta Fourier objective.

Tables Icon

Table 6 Possible angular resolutions of a spatial splitting multi-hogel system as a function of the number of hogels in a hogel cluster for a VGA SLM formed by a conventional Fourier objective.

Tables Icon

Table 7 Comparison between multi-hogel printing technology and conventional one.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d max 2 l tan δ γ 2 .
Δ γ = arctan λ α d ,
d min λ α tan Δ γ .
λ α tan Δ γ d 2 l tan δ γ 2 .
T A d 2 f pulse ,
T A d v ,
A d 2 f pulse T A d v .
t hogel = τ + t move + t wait ,
τ = d 2 S P ε ,
t move = 2 d a ,
T = A d 2 ( d 2 S P ε + 2 d a + t wait ) .
T = A S P ε + 2 K d a + t wait K .
T = A S P ε + 2 K d M a + t wait K ,
T = A S P ε + 2 K d M a + t wait K + K ( M 2 1 ) t shift ,
2 σ = 2 arctan h 2 f ,
N A = sin ( arctan D 2 f ) sin ( arctan h 2 f ) = sin σ ,
2 σ = 2 arctan h 2 M f Σ ,
Φ Σ = Φ 1 + Φ 2 + Φ 3 Φ 1 d 1 ( Φ 2 + Φ 3 ) Φ 3 d 2 ( Φ 1 + Φ 2 Φ 1 Φ 2 d 1 ) ,
2 σ = 2 arctan h f 2 2 M f 3 f 1 .
f Σ = f 1 f 3 f 2 = f M .
NA Σ = sin ( arctan h M 2 f ) .
Δ γ = M σ N π = 2 M σ N ,
Δ γ = arctan 2 M tan σ N ,
d = f tan γ .
N A = sin ( arctan h + M d 2 f ) ,

Metrics