Abstract

We present the potential of ultrathin bilayer metallic nanofilms for use as broadband antireflection coatings in the terahertz frequency range. The metallic layers are modeled using a wave-impedance matching approach. The experimental and theoretical results are in good agreement. Further, a novel method using our broadband antireflection coatings is proposed to eliminate unwanted reflections that interfere with the important reflection from the sample in terahertz reflection measurement. The proposed method significantly improves the calculation of the optical properties of liquid and biological samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  2. M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
    [CrossRef]
  3. S. Huang, P. C. Ashworth, K. W. Kan, Y. Chen, V. P. Wallace, Y. T. Zhang, E. Pickwell-MacPherson, “Improved sample characterization in terahertz reflection imaging and spectroscopy,” Opt. Express 17(5), 3848–3854 (2009).
    [CrossRef] [PubMed]
  4. W. E. Lai, H. W. Zhang, Y. H. Zhu, Q. Y. Wen, “A Novel Method of Terahertz Spectroscopy and Imaging in Reflection Geometry,” Appl. Spectrosc. 67(1), 36–39 (2013).
    [CrossRef] [PubMed]
  5. K. Kawase, N. Hiromoto, “Terahertz-wave antireflection coating on Ge and GaAs with fused quartz,” Appl. Opt. 37(10), 1862–1866 (1998).
    [CrossRef] [PubMed]
  6. H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [CrossRef] [PubMed]
  7. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  8. Y. W. Chen, P. Y. Han, X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
    [CrossRef]
  9. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E. B. Kley, A. Tünnermann, “Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range,” Opt. Express 17(5), 3063–3077 (2009).
    [CrossRef] [PubMed]
  10. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15(3), 779–789 (2007).
    [CrossRef] [PubMed]
  11. J. Kröll, J. Darmo, K. Unterrainer, “Metallic wave-impedance matching layers for broadband terahertz optical systems,” Opt. Express 15(11), 6552–6560 (2007).
    [CrossRef] [PubMed]
  12. A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
    [CrossRef]
  13. S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).
  14. M. Dressel and G. Gruener, Electrodynamics of Solids (Cambridge Press, 2002).
  15. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980).
  16. P. U. Jepsen, U. Møller, H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy,” Opt. Express 15(22), 14717–14737 (2007).
    [CrossRef] [PubMed]
  17. P. U. Jepsen, J. K. Jensen, U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express 16(13), 9318–9331 (2008).
    [CrossRef] [PubMed]
  18. Terahertz Database, http://thzdb.org .

2013 (1)

2010 (1)

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

P. U. Jepsen, J. K. Jensen, U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express 16(13), 9318–9331 (2008).
[CrossRef] [PubMed]

A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[CrossRef]

2007 (4)

2002 (2)

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[CrossRef]

1998 (1)

1987 (1)

S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).

Ashworth, P. C.

Azad, A. K.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Beard, M. C.

M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[CrossRef]

Brückner, C.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, Y.

Chen, Y. W.

Y. W. Chen, P. Y. Han, X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Darmo, J.

Drew, H. D.

S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).

Ferguson, B.

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Han, P. Y.

Y. W. Chen, P. Y. Han, X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Helm, H.

A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[CrossRef]

Hiromoto, N.

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, S.

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jensen, J. K.

Jepsen, P. U.

Kan, K. W.

Käsebier, T.

Kawase, K.

Kern, A.

A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[CrossRef]

Kley, E. B.

Kröll, J.

Lai, W. E.

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

McKnight, S. W.

S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).

Merbold, H.

Møller, U.

Moorjani, K.

S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).

Notni, G.

O’Hara, J. F.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Pickwell-MacPherson, E.

Pradarutti, B.

Riehemann, S.

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[CrossRef]

Steinkopf, R.

Stenzel, O.

Stewart, K. P.

S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).

Taylor, A. J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Thoman, A.

A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[CrossRef]

Tünnermann, A.

Turner, G. M.

M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[CrossRef]

Unterrainer, K.

Wallace, V. P.

Walther, M.

A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[CrossRef]

Wen, Q. Y.

Zhang, H. W.

Zhang, X. C.

Y. W. Chen, P. Y. Han, X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Zhang, Y. T.

Zhou, J.

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Zhu, Y. H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. W. Chen, P. Y. Han, X. C. Zhang, “Tunable broadband antireflection structures for silicon at terahertz frequency,” Appl. Phys. Lett. 94(4), 041106 (2009).
[CrossRef]

Appl. Spectrosc. (1)

Infrared Phys. Technol. (1)

S. W. McKnight, K. P. Stewart, H. D. Drew, K. Moorjani, “Wavelength-independent anti-interference coating for the far-infrared,” Infrared Phys. Technol. 27, 327–333 (1987).

J. Phys. Chem. B (1)

M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, “Terahertz Spectroscopy,” J. Phys. Chem. B 106(29), 7146–7159 (2002).
[CrossRef]

Nat. Mater. (1)

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef] [PubMed]

Opt. Express (6)

Phys. Rev. B (1)

A. Thoman, A. Kern, H. Helm, M. Walther, “Nanostructured gold films as broadband terahertz antireflection coatings,” Phys. Rev. B 77(19), 195405 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

H. T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[CrossRef] [PubMed]

Other (3)

M. Dressel and G. Gruener, Electrodynamics of Solids (Cambridge Press, 2002).

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980).

Terahertz Database, http://thzdb.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Reflection and refraction of the electromagnetic wave transmitted through the optical system, where the electric field E is perpendicular to the plane of incidence and the magnetic field H is parallel to the plane of incidence (a). Reflection and refraction of the electromagnetic wave transmitted through the optical system, where the electric field E is parallel to the plane of incidence and the magnetic field H is perpendicular to the plane of incidence (b).

Fig. 2
Fig. 2

Schematic of terahertz pulse transmitted through the uncoated and the coated substrates in the transmission (a) and the reflection geometries (b).

Fig. 3
Fig. 3

Schematic diagrams to illustrate the measurement configurations for the reference reflection (a) and the sample reflection (b).

Fig. 4
Fig. 4

Amplitude of the main and the second terahertz pulses transmitted through the silicon substrate with ultrathin bilayer Fe19Ni81 /Cu film in transmission geometry (a); Amplitude of the main and the second terahertz pulses reflected from the silicon substrate with ultrathin bilayer Fe19Ni81 /Cu film in reflection geometry (b).

Fig. 5
Fig. 5

Time domain waveforms of the measured main and second terahertz pulses transmitted through the uncoated and coated substrates in transmission geometry (a); Time domain waveforms of the measured main and second terahertz pulses reflected from the uncoated and coated substrates in reflection geometry (b).

Fig. 6
Fig. 6

Transmittance of uncoated and coated silicon substrates obtained by the Fourier transform infrared spectroscopy (FTIR).

Fig. 7
Fig. 7

Time domain waveforms of the measured reference R r e f , the measured superposed reflection R r e f + R s a m and recovered reflection R s a m by using our proposed method.

Fig. 8
Fig. 8

The refractive index and the absorption coefficient of the de-ionized water using our method.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E is + E rs = E ts
( H ip cos θ sub H rp cos θ sub ) H tp cos θ air = J s ,
J s = E ts i=1 2 σ ˜ i d i .
r s = n ˜ sub cos θ sub n ˜ air cos θ air Z 0 i=1 2 σ ˜ i d i n ˜ sub cos θ sub + n ˜ air cos θ air + Z 0 i=1 2 σ ˜ i d i
t s = 2 n ˜ sub cos θ sub n ˜ sub cos θ sub + n ˜ air cos θ air + Z 0 i=1 2 σ ˜ i d i .
E ip cos θ sub E rp cos θ sub = E tp cos θ air
( H is + H rs ) H ts = J p ,
J p = E tp cos θ air i=1 2 σ ˜ i d i .
r p = n ˜ air cos θ sub n ˜ sub cos θ air + Z 0 cos θ sub cos θ air i=1 2 σ ˜ i d i n ˜ air cos θ sub + n ˜ sub cos θ air + Z 0 cos θ sub cos θ air i=1 2 σ ˜ i d i
t p = 2 n ˜ sub cos θ sub n ˜ air cos θ sub + n ˜ sub cos θ air + Z 0 cos θ sub cos θ air i=1 2 σ ˜ i d i .
n ˜ sub cos θ sub n ˜ air cos θ air = Z 0 i=1 2 σ ˜ i d i .
n ˜ sub cos θ air n ˜ air cos θ sub = Z 0 cos θ sub cos θ air i=1 2 σ ˜ i d i .

Metrics