Abstract

A differential profilometry technique is adapted to the problem of measuring the roughness of hollow glass fibres by use of immersion objectives and index-matching liquid. The technique can achieve picometer level sensitivity. Cross validation with AFM measurements is obtained through use of vitreous silica step calibration samples. Measurements on the inner surfaces of fibre-sized glass capillaries drawn from high purity suprasil F300 tubes show a sub-nanometer roughness, and the roughness power spectrum measured in the range [5·10−3μm−1 − 10−1μm−1] is consistent with the description of the glass surface as a superposition of frozen capillary waves. The surface roughness spectrum of two capillary tubes of differing compositions can be quantitatively distinguished.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers

Xavier Buet, Coralie Brun, Jérôme Gâteau, Bruno Bresson, Seyed Reza Sandoghchi, Eric Numkam Fokoua, Marco Petrovich, Francesco Poletti, David Richardson, Damien Vandembroucq, and Gilles Tessier
Opt. Lett. 41(21) 5086-5089 (2016)

Ultimate low loss of hollow-core photonic crystal fibres

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell
Opt. Express 13(1) 236-244 (2005)

Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers

Eric Numkam Fokoua, Francesco Poletti, and David J. Richardson
Opt. Express 20(19) 20980-20991 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow core photonic bandgap fibres; technology and applications,” Nanophotonics 2, 315–340 (2013).
    [Crossref]
  2. V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
    [Crossref]
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
    [Crossref]
  4. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980 (2012).
    [Crossref] [PubMed]
  5. N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).
  6. F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
    [Crossref]
  7. J. Jäckle and K. Kawazaki, “Intrinsic roughness of glass surfaces,” J. Phys. Condens. Matter 7, 4351–4358 (1995).
    [Crossref]
  8. T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
    [Crossref]
  9. M. C. Phan-Huy, J. M. Moison, J. A. Levenson, S. Richard, G. Mélin, M. Douay, and Y. Quiquempois, “Surface roughness and light scattering in a small effective area microstructured fiber,” J. Lightwave Technol. 27, 1597–1604 (2009).
    [Crossref]
  10. A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
    [Crossref] [PubMed]
  11. B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
    [Crossref]
  12. A. Raudsepp, C. Fretigny, F. Lequeux, and L. Talini, “Two beam surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.83 (2012).
    [Crossref] [PubMed]
  13. P. Gleyzes and A. C. Boccara, “Interferometric polarization picometric profile .1. single detector approach,” J. Opt. 25, 207–224 (1994).
    [Crossref]
  14. http://www.bruker.com/products/surface-analysis/atomic-force-microscopy/dimension-icon/technical-details.html .
  15. D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
    [Crossref] [PubMed]
  16. M. Thiebaud and T. Bickel, “Nonequilibrium fluctuations of an interface under shear,” Phys. Rev. E 81, 031602 (2010).
    [Crossref]

2014 (1)

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

2013 (2)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow core photonic bandgap fibres; technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

2012 (1)

2011 (1)

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

2010 (1)

M. Thiebaud and T. Bickel, “Nonequilibrium fluctuations of an interface under shear,” Phys. Rev. E 81, 031602 (2010).
[Crossref]

2009 (1)

2006 (2)

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
[Crossref]

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

2005 (1)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

1995 (1)

J. Jäckle and K. Kawazaki, “Intrinsic roughness of glass surfaces,” J. Phys. Condens. Matter 7, 4351–4358 (1995).
[Crossref]

1994 (1)

P. Gleyzes and A. C. Boccara, “Interferometric polarization picometric profile .1. single detector approach,” J. Opt. 25, 207–224 (1994).
[Crossref]

Aarts, D. G. A. L.

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

Alam, S. U.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Baddela, N.

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Baddela, N. K.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Bickel, T.

M. Thiebaud and T. Bickel, “Nonequilibrium fluctuations of an interface under shear,” Phys. Rev. E 81, 031602 (2010).
[Crossref]

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Boccara, A. C.

P. Gleyzes and A. C. Boccara, “Interferometric polarization picometric profile .1. single detector approach,” J. Opt. 25, 207–224 (1994).
[Crossref]

Bonn, D.

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

Couny, F.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Derks, D.

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

Douay, M.

Ducouret, G.

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

Farr, L.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Fokoua, E. N.

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980 (2012).
[Crossref] [PubMed]

Fokoua, E. R. N.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Fournier, D.

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Fretigny, C.

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

A. Raudsepp, C. Fretigny, F. Lequeux, and L. Talini, “Two beam surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.83 (2012).
[Crossref] [PubMed]

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Gleyzes, P.

P. Gleyzes and A. C. Boccara, “Interferometric polarization picometric profile .1. single detector approach,” J. Opt. 25, 207–224 (1994).
[Crossref]

Gray, D.

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Gray, D. R.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Hayes, E. J. R.

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Hayes, J. R.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

Imhof, A.

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

Jäckle, J.

J. Jäckle and K. Kawazaki, “Intrinsic roughness of glass surfaces,” J. Phys. Condens. Matter 7, 4351–4358 (1995).
[Crossref]

Kawazaki, K.

J. Jäckle and K. Kawazaki, “Intrinsic roughness of glass surfaces,” J. Phys. Condens. Matter 7, 4351–4358 (1995).
[Crossref]

Knight, J. C.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Kuschnerov, M.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Lekkerkerker, H. N. W.

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

Lelarge, A.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
[Crossref]

Lequeux, F.

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

A. Raudsepp, C. Fretigny, F. Lequeux, and L. Talini, “Two beam surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.83 (2012).
[Crossref] [PubMed]

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Levenson, J. A.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Mason, M. W.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Mélin, G.

Moison, J. M.

Monteux, C.

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Parmigiani, F. R.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Petrovich, M. N.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow core photonic bandgap fibres; technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Phan-Huy, M. C.

Poletti, F.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow core photonic bandgap fibres; technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980 (2012).
[Crossref] [PubMed]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Pottier, B.

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

Quiquempois, Y.

Raudsepp, A.

A. Raudsepp, C. Fretigny, F. Lequeux, and L. Talini, “Two beam surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.83 (2012).
[Crossref] [PubMed]

Richard, S.

Richardson, D. J.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow core photonic bandgap fibres; technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980 (2012).
[Crossref] [PubMed]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Roberts, P. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Roger, J. P.

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Russell, P. S.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Sabert, H.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Sarlat, T.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
[Crossref]

Slavík, R.

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Sleiffer, V. A. J. M.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Søndergård, E.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
[Crossref]

Surof, J.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Talini, L.

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

A. Raudsepp, C. Fretigny, F. Lequeux, and L. Talini, “Two beam surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.83 (2012).
[Crossref] [PubMed]

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Tay, A.

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Thibierge, C.

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

Thiebaud, M.

M. Thiebaud and T. Bickel, “Nonequilibrium fluctuations of an interface under shear,” Phys. Rev. E 81, 031602 (2010).
[Crossref]

Tomlinson, A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Vandembroucq, D.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
[Crossref]

Veljanowski, V.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Waardt, H. D.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Wheeler, N. V.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

Williams, D. P.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

Wong, N. H. L.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Wooler, J. P.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Yongmin, J.

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

Eur. Phys. J. B (1)

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Eur. Phys. J. B 54, 121–127 (2006).
[Crossref]

J. Lightwave Technol. (2)

V. A. J. M. Sleiffer, J. Yongmin, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanowski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. D. Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854 (2014).
[Crossref]

M. C. Phan-Huy, J. M. Moison, J. A. Levenson, S. Richard, G. Mélin, M. Douay, and Y. Quiquempois, “Surface roughness and light scattering in a small effective area microstructured fiber,” J. Lightwave Technol. 27, 1597–1604 (2009).
[Crossref]

J. Opt. (1)

P. Gleyzes and A. C. Boccara, “Interferometric polarization picometric profile .1. single detector approach,” J. Opt. 25, 207–224 (1994).
[Crossref]

J. Phys. Condens. Matter (1)

J. Jäckle and K. Kawazaki, “Intrinsic roughness of glass surfaces,” J. Phys. Condens. Matter 7, 4351–4358 (1995).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow core photonic bandgap fibres; technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Nat. Photon. (1)

F. Poletti, N. V. Wheeler, N. Baddela, E. N. Fokoua, J. R. Hayes, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279–284 (2013).
[Crossref]

Opt. Express (2)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 237 (2005).
[Crossref]

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20, 20980 (2012).
[Crossref] [PubMed]

Phys. Rev. E (1)

M. Thiebaud and T. Bickel, “Nonequilibrium fluctuations of an interface under shear,” Phys. Rev. E 81, 031602 (2010).
[Crossref]

Phys. Rev. Lett. (1)

D. Derks, D. G. A. L. Aarts, D. Bonn, H. N. W. Lekkerkerker, and A. Imhof, “Suppression of thermally excited capillary waves by shear flow,” Phys. Rev. Lett. 97, 038301 (2006).
[Crossref] [PubMed]

Soft Matter (1)

B. Pottier, G. Ducouret, C. Fretigny, F. Lequeux, and L. Talini, “High bandwidth linear viscoelastic properties of complex fluids from the measurement of their free surface fluctuations,” Soft Matter 7, 7843–7850 (2011).
[Crossref]

Other (4)

A. Raudsepp, C. Fretigny, F. Lequeux, and L. Talini, “Two beam surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.83 (2012).
[Crossref] [PubMed]

A. Tay, C. Thibierge, D. Fournier, C. Fretigny, F. Lequeux, C. Monteux, J. P. Roger, and L. Talini, “Probing thermal waves on the free surface of various media: Surface fluctuation specular reflection spectroscopy,” Rev. Sci. Instrum.79 (2008).
[Crossref] [PubMed]

N. V. Wheeler, M. N. Petrovich, R. Slavík, N. Baddela, E. J. R. Hayes, D. Gray, F. Poletti, and D. J. Richardson, “Wide-bandwidth, low-loss, 19-cell hollow core photonic band gap fiber and its potential for low latency data transmission,” in “National Fiber Optic Engineers Conference,” (OSA, 2012).

http://www.bruker.com/products/surface-analysis/atomic-force-microscopy/dimension-icon/technical-details.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Polarization-modulated differential scanning interferometer. The light of the laser diode is separated into two beams carrying orthogonal polarizations by a Wollaston prism. The immersion objective is focused on the top inner interface of the capillary tube. After reflection, these beams are recombined and sent through a photoelastic polarization modulator and sent on a laser diode for lock-in detection.

Fig. 2
Fig. 2

Current performances Noise levels measured on different kinds of samples. τ is the time constant of the lock-in amplifier.

Fig. 3
Fig. 3

Response function |(f)|2 for a beam waist w = 1.3μm and a beam separation d = 3.4μm. At low frequency, the profilometer acts as a differential operator and and we get the parabolic behavior |(f)|2f2. In addition to the diffraction effect at high frequency, the zero induced by the differential operator is clearly visible at frequency fd = 1/d = 0.29μm−1, and can provide an experimental determination of d.

Fig. 4
Fig. 4

Tests on silica steps obtained in air by RIE etching (exposure time 15s). Left: AFM image (estimated step height 11.7nm) Right: Differential profilomety measurement obtained at the glass/air interface on the same step (estimated step height 11.1nm after fitting with analytical expression (5), using d = 6.5μm and w = 2.1μm). The displacement step size used for the measurement was 0.18μm.

Fig. 5
Fig. 5

Differential profile obtained on the inner surface of a silica capillary tube over a length of 200 μm. Height fluctuations are extremely low, in the range of a few hundreds of picometers.

Fig. 6
Fig. 6

Differential profilometry measurements on inner surfaces of two hollow glass fibres (silica and alumina doped silica). The power spectral densities of the differential height signal are represented as continuous lines. The dashed lines are fits obtained with the analytical expression (16). The linear trend observed at low frequency is consistent with a scenario of frozen capillary waves at the glass surface.

Fig. 7
Fig. 7

Roughness measurements on inner surfaces of two hollow glass fibres (silica and alumina doped silica). The power spectral densities of the height signal are obtained after division by the response function. The dashed and dotted lines are fits obtained with the analytical expression (15). The clear 1/f trend observed at low frequency is consistent with a scenario of frozen capillary waves at the glass surface.

Tables (1)

Tables Icon

Table 1 Height of silica steps made by RIE, as measured by AFM and by differential profilometry in air and in immersion. The heights obtained by optical profilometry correspond to the parameters M providing the best fits to the experimental data using expression (5).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = r E 0 2 [ 1 + cos φ cos Φ ( t ) sin φ sin Φ ( t ) ] r E 0 2 [ 1 + J 0 ( Φ M ) cos φ 2 J 1 ( Φ M ) sin φ sin ω t + 2 J 2 ( Φ M ) cos φ cos 2 ω t + ]
D ( x ) h ( x + d / 2 ) h ( x + d / 2 ) d . h ( x )
D ( x ) = λ 4 π arcsin [ A ( x ) sin ( 4 π M λ ) ] .
A ( x ) = 1 2 [ erf ( x + d / 2 w ) erf ( x d / 2 w ) ] .
D ( x ) M A ( x ) = M 2 [ erf ( x + d / 2 w ) erf ( x d / 2 w ) ] .
R ( x ) = A ( x ) = G ( x + d / 2 ) G ( x d / 2 ) ,
G ( x ) = 1 w π exp [ ( x w ) 2 ] .
R ˜ ( f ) = 2 i e π 2 f 2 w 2 sin ( π f d ) ,
g ˜ ( f ) = g ( x ) e 2 i π f x d x .
D ˜ ( f ) = R ˜ ( f ) h ˜ ( f ) = 2 i e π 2 f 2 w 2 sin ( π f d ) h ˜ ( f )
| D ˜ ( f ) | 2 = | R ˜ ( f ) | 2 C ˜ ( f )
= 4 | sin ( π f d ) | 2 e 2 π 2 f 2 w 2 | h ˜ ( f ) | 2
C ˜ ( f ) = π σ 2 τ e π 2 f 2 τ 2
| D ˜ ( f ) | 2 = 4 π σ 2 τ | sin ( π f d ) | 2 e π 2 f 2 ( 2 w 2 + τ 2 )
| h ˜ SCW ( f ) | 2 = k b T G 2 π γ f ,
| D ˜ SCW ( f ) | 2 = 4 e 2 π 2 f 2 w 2 | sin ( π f d ) | 2 k b T G 2 π γ f ,
2 π d 2 k b T G γ f if f 1 d .

Metrics