Abstract

We present a wide-field microscopy technique for the 3D mapping of optical intensity distributions using Brownian gold nanopar-ticles as local probes, which are localized by off-axis holography. Fast computation methods allow us to localize hundreds of particles per minute with accuracies as good as 3 × 3 × 10nm3 for immobilized particles. Factors limiting this accuracy are discussed and the possibilities of the technique are illustrated through the 3D optical mapping of an evanescent and a propagative wave. Our results pave the way for a new stochastic imaging technique, well adapted to subwavelength optical characterization in water-based systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles

F. Verpillat, F. Joud, P. Desbiolles, and M. Gross
Opt. Express 19(27) 26044-26055 (2011)

Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices

Petr Bouchal and Zdeněk Bouchal
Opt. Express 22(24) 30200-30216 (2014)

Optical-tweezing-based linear-optics nanoscopy

Omer Wagner, Moty Schultz, Yonatan Ramon, Eli Sloutskin, and Zeev Zalevsky
Opt. Express 24(8) 8013-8027 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
    [Crossref] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref] [PubMed]
  4. H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
    [Crossref] [PubMed]
  5. S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
    [Crossref] [PubMed]
  6. C. Osseforth, J. R. Moffitt, L. Schermelleh, and J. Michaelis, “Simultaneous dual-color 3D STED microscopy,” Opt. Express 22, 7028–7039 (2014).
    [Crossref] [PubMed]
  7. X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
    [Crossref] [PubMed]
  8. Y. K. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett. 32, 811–813 (2007).
    [Crossref] [PubMed]
  9. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [Crossref] [PubMed]
  10. F. Verpillat, F. Joud, P. Desbiolles, and M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011).
    [Crossref]
  11. M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64, 39–44 (2011).
    [Crossref]
  12. J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38, 409–426 (2007).
    [Crossref]
  13. K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
    [Crossref] [PubMed]
  14. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Comm.3, (2012).
    [Crossref]
  15. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
    [Crossref]
  16. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
    [Crossref]
  17. C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
    [Crossref] [PubMed]
  18. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
    [Crossref]
  19. E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philosophical Magazine Series 7 6, 356–362 (1928).
  20. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
    [Crossref] [PubMed]
  21. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16, 9811–9820 (2008).
    [Crossref] [PubMed]
  22. M. Seifi, L. Denis, and C. Fournier, “Fast and accurate 3D object recognition directly from digital holograms,” J. Opt. Soc. Am. A 30, 2216 (2013).
    [Crossref]
  23. A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
    [Crossref]
  24. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, and D. Fournier, and others, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express 18, 780–786 (2010).
    [Crossref] [PubMed]
  25. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
    [Crossref] [PubMed]
  26. M. Atlan, M. Gross, P. Desbiolles, E. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Lett. 33, 500–502 (2008).
    [Crossref] [PubMed]
  27. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
    [Crossref] [PubMed]
  28. C.C. Davis, Lasers And Electro Optics (Cambridge University, 1996).
  29. G. Volpe, T. Brettschneider, L. Helden, and C. Bechinger, “Novel perspectives for the application of total internal reflection microscopy,” Opt. Express 17, 23975–23985 (2009).
    [Crossref]

2014 (5)

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

C. Osseforth, J. R. Moffitt, L. Schermelleh, and J. Michaelis, “Simultaneous dual-color 3D STED microscopy,” Opt. Express 22, 7028–7039 (2014).
[Crossref] [PubMed]

2013 (3)

M. Seifi, L. Denis, and C. Fournier, “Fast and accurate 3D object recognition directly from digital holograms,” J. Opt. Soc. Am. A 30, 2216 (2013).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

2012 (1)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

2011 (4)

M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64, 39–44 (2011).
[Crossref]

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
[Crossref] [PubMed]

F. Verpillat, F. Joud, P. Desbiolles, and M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (2)

2007 (4)

2006 (3)

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

2002 (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

1928 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philosophical Magazine Series 7 6, 356–362 (1928).

Abboud, M.

Absil, E.

Ash, W. M.

Atlan, M.

Badizadegan, K.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Bechinger, C.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Brettschneider, T.

Bun, P.

Byeon, C. C.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Cang, H.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Chaudhary, K.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Cheng, X.

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

Cho, Y.-H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Choi, G.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Choi, S. B.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Coppey-Moisan, M.

Dai, D.

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

Dasari, R. R.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Davis, C.C.

C.C. Davis, Lasers And Electro Optics (Cambridge University, 1996).

Denis, L.

Desbiolles, P.

Dimiduk, T. G.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Feld, M. S.

Fink, M.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Fournier, C.

Fournier, D.

Fung, J.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Gladden, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Grier, D. G.

Gross, M.

Han, S.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

He, J.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
[Crossref] [PubMed]

He, Y.

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

Hein, B.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

Helden, L.

Hell, S. W.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Jakobs, S.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

Jeong, M. S.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Jin, K.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

Jones, S. A.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
[Crossref] [PubMed]

Joud, F.

Kaina, N.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Kellner, R. R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

Kim, D.-S.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Kim, J.

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38, 409–426 (2007).
[Crossref]

Kim, M.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

Kim, M. K.

Kim, S.-H.

Ko, S. H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Kretzschmar, I.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Labno, A.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

Lee, S. G.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Lee, S.-H.

Lee, Y.-H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

Lemoult, F.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Lerosey, G.

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Liu, M.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Liu, Y.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Comm.3, (2012).
[Crossref]

Lu, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Comm.3, (2012).
[Crossref]

Manoharan, V. N.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Medda, R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

Michaelis, J.

Moffitt, J. R.

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Nam, K. T.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Osseforth, C.

Park, C.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Park, D. J.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Park, J.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Park, J.-H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Park, K.-D.

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Park, Y.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Park, Y. K.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Popescu, G.

Razavi, S.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Rodriguez, C.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

Roichman, Y.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Schermelleh, L.

Seifi, M.

Shim, S.-H.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
[Crossref] [PubMed]

Shin, J.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Song, K.-B.

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38, 409–426 (2007).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64, 39–44 (2011).
[Crossref]

Suck, S.

Synge, E. H.

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philosophical Magazine Series 7 6, 356–362 (1928).

Tessier, G.

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

van Blaaderen, A.

van Oostrum, P.

Verpillat, F.

Volpe, G.

Wang, A.

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Warnasooriya, N.

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

Willig, K. I.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

Xu, D.

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

Yang, S.-M.

Yeung, E. S.

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

Yi, G.-R.

Yin, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Yu, H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

Zhang, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Zhuang, X.

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Anal. Chem. (1)

X. Cheng, D. Dai, D. Xu, Y. He, and E. S. Yeung, “Subdiffraction-Limited Plasmonic Imaging with Anisotropic Metal Nanoparticles,” Anal. Chem. 86, 2303–2307 (2014).
[Crossref] [PubMed]

Biophys. J. (1)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Wang, T. G. Dimiduk, J. Fung, S. Razavi, I. Kretzschmar, K. Chaudhary, and V. N. Manoharan, “Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles,” J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
[Crossref]

Micron (1)

J. Kim and K.-B. Song, “Recent progress of nano-technology with NSOM,” Micron 38, 409–426 (2007).
[Crossref]

Nanotechnology (1)

K.-D. Park, D. J. Park, S. G. Lee, G. Choi, D.-S. Kim, C. C. Byeon, S. B. Choi, and M. S. Jeong, “Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks,” Nanotechnology 25, 075704 (2014).
[Crossref] [PubMed]

Nat. Methods (3)

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nat. Methods 3, 721–723 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

S. A. Jones, S.-H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8, 499–505 (2011).
[Crossref] [PubMed]

Nat. Photon. (2)

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photon. 7, 454–458 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Nat. Phys. (1)

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9, 55–60 (2013).
[Crossref]

Nature (1)

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (3)

Philosophical Magazine Series 7 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philosophical Magazine Series 7 6, 356–362 (1928).

Phys. Rev. Lett. (1)

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-Field Subwavelength Imaging Using a Scattering Superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref] [PubMed]

Phys. Today (1)

M. I. Stockman, “Nanoplasmonics: The physics behind the applications,” Phys. Today 64, 39–44 (2011).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Other (2)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Comm.3, (2012).
[Crossref]

C.C. Davis, Lasers And Electro Optics (Cambridge University, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Schematic of the experimental setup. The polarizing beam splitter (PBS) and half wave plate (λ/2) allow balancing of the object and reference arms intensities, and the second half wave plate aligns the polarization of the reference arm to maximize interference contrast. b,c) Zoomed schematics of the microfluidic chamber containing gold nanoparticles in water. Above the glass/water total reflection angle (b), the particles are only illuminated by the evanescent wave, whereas below this critical incidence angle (c), propagative light directly illuminates the particles, and is then reflected at the glass chamber/air interface. In both cases, only the light scattered by the particles is collected by the objective.

Fig. 2
Fig. 2

a) Position histograms for 200 successive localizations of the same immobilized NP. The values are centred around its mean position to highlight the standard deviation on the localization position. b) Sample defocusing during the acquisition time is corrected by subtracting a smoothed z position. c) 3D reconstructed intensity from a single snapshot of two NPs immobilized in the PVA film. The shadowed plane indicates the position of the glass substrate and the red ellipses are centred on the coordinates given by the localization algorithm.

Fig. 3
Fig. 3

Normalized intensity I(z) of the light scattered by 30 nm radius nanoparticles represented in a) linear and b) logarithmic scale. 1500 individual localization events were extracted from a total of 2000 holograms (total acquisition time 100 s). The position of the glass/water interface, corresponding to z=0, was determined by localizing particles fixed to the interface. Detection events located in the z < 0 region result from noise in the localization. The solid black line corresponds to the theoretically expected exponential decay (β = 80 nm for θ = 72°, no adjustment). In red filled circles •, mean position values calculated from events inside the logarithmically distributed boxes indicated by thin grid lines. In (b), 95% confidence intervals are represented as horizontal error bars. The size of the experimental data symbols in a) is in real scale with the z axis, to give a pictorial flavour of a 30 nm radius nanoparticle probing an 80 nm decay length evanescent field. Alternatively, in b) symbols are intendedly smaller to emphasize the high number of localization events.

Fig. 4
Fig. 4

a) Position of 36000 localization events detected when illuminating gold particles 50 nm in radius undergoing Brownian motion in water, with a λ = 660 nm diode laser beam. The intensity I(x, y, z) recorded at each location is represented by the size of the spheres. The red line corresponds to a 3D linear regression on the positions and indicates the direction of the laser beam. b) Projection of the values I(x, y, z) onto a plane perpendicular to the propagation axis, . The two axis of the laser diode beam are clearly identified (red and green lines). Fitted profiles along these axis allow the retrieval of the Gaussian characteristics of the beam (see text).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ = ( z μ ) 2 = α N
I ( z r ) = I 0 exp ( z r / β ) .
Z 0 = z r + σ = z r + α I ( z r ) η
Z ^ i = 1 J i j B i Z 0 ( j ) = z r ( B i ) + α J i I ( z r ) η ,
w out 2 = w in 2 f 2 f 2 + q in 2
q out = q in f 2 f 2 + q in 2

Metrics