Abstract

Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed (“RainBow”) provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffractive optical element for creating visual 3D images

Alexander Goncharsky, Anton Goncharsky, and Svyatoslav Durlevich
Opt. Express 24(9) 9140-9148 (2016)

Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer

Chih-Kung Lee, Jeremy Wen-Jong Wu, Sheng-Lie Yeh, Chih-Wen Tu, Yi-An Han, Eric Hong-Zong Liao, Linus Ying-Yueh Chang, I-En Tsai, Hsiu-Hung Lin, Jeffrey Chi-Tang Hsieh, and Julie Tsai-Wei Lee
Appl. Opt. 39(1) 40-53 (2000)

Diffractive optical elements for optical identification

Vishal Gandhi, Joni Orava, Hemmo Tuovinen, Toni Saastamoinen, Janne Laukkanen, Seppo Honkanen, and Markku Hauta-Kasari
Appl. Opt. 54(7) 1606-1611 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
    [Crossref] [PubMed]
  2. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27(16), 1403–1405 (2002).
    [Crossref] [PubMed]
  3. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
    [Crossref] [PubMed]
  4. T. Kiire, D. Barada, J. Sugisaka, Y. Hayasaki, and T. Yatagai, “Color digital holography using a single monochromatic imaging sensor,” Opt. Lett. 37(15), 3153–3155 (2012).
    [Crossref] [PubMed]
  5. J. Garcia-Sucerquia, “Color lensless digital holographic microscopy with micrometer resolution,” Opt. Lett. 37(10), 1724–1726 (2012).
    [Crossref] [PubMed]
  6. V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
    [Crossref]
  7. V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.
  8. A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
    [Crossref]
  9. A. Firsov, A. I. Erko, and A. Svintsov, “Design and fabrication of the diffractive X-ray optics at BESSY,” Proc. SPIE 5539, 160–164 (2004).
    [Crossref]
  10. A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
    [Crossref]
  11. Website of the International Holography Manufacturer Association, www.ihma.com .
  12. R. A. Lee, “Pixelgram: an application of electron-beam lithography for the security printing industry,” Proc. SPIE 1509, 48–54 (1991).
    [Crossref]
  13. M. J. Huang, S. L. Yeh, C. K. Lee, and T. K. Huang, “Large-format grating image hologram based on e-beam lithography,” Proc. SPIE 2652, 117–123 (1996).
  14. R. A. Lee, “Micro-technology for anti- counterfeiting,” Microelectron. Eng. 53(1–4), 513–516 (2000).
    [Crossref]
  15. P. W. Leech, B. A. Sexton, and R. J. Marnock, “Scanning probe microscope analysis of microstructures in optically variable devices,” Microelectron. Eng. 60(3–4), 339–346 (2002).
    [Crossref]
  16. A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
    [Crossref]
  17. V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).
  18. A. Goncharsky, Anton Goncharsky, “E-beam technology: rising to new levels of protection,” Holography News, (2004).
  19. D. Pizzanelli, “The development of direct-write digital holography, tech review,” (The Holographer, 2004). http://www.holographer.org/articles/hg00001/hg00001.html .
  20. R. L. van Renesse, “Security aspects of commercially available dot matrix and image matrix origination systems,” presented at SPIE International Conference on Optical Holography and its Applications, Kiev, Ukraine, 24–27 May 2004.
  21. R. L. Renesse, ed., Optical Document Security (Artech House, 1994).
  22. Fabrication of OVD with NanoMaker,” http://www.nanomaker.com/nav.php?go=rainbowhol .
  23. NanoMaker. Innovative solutions for nano-lithography,” www.nanomaker.com .
  24. A. Charles, Poynton, Digital Video and HDTV: Algorithms and Interfaces (Morgan Kaufmann Publishers, 2003).
  25. C. K. Lee, J. W. Wu, S. L. Yeh, C. W. Tu, Y. A. Han, E. H. Liao, L. Y. Chang, I. E. Tsai, H. H. Lin, J. C. Hsieh, and J. T. Lee, “Optical configuration and color-representation range of a variable-pitch dot matrix holographic printer,” Appl. Opt. 39(1), 40–53 (2000).
    [Crossref] [PubMed]
  26. M. Skeren, P. Fiala, and I. Richter, “Synthetic diffractive elements for security applications realized on an enhanced integral dot-matrix system,” Appl. Opt. 45(1), 27–32 (2006).
    [Crossref] [PubMed]
  27. S. L. Yeh, “Using random features of dot-matrix holograms for anticounterfeiting,” Appl. Opt. 45(16), 3698–3703 (2006).
    [Crossref] [PubMed]
  28. S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
    [Crossref]

2012 (2)

2006 (2)

2005 (2)

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30(2), 144–146 (2005).
[Crossref] [PubMed]

2004 (2)

A. Firsov, A. I. Erko, and A. Svintsov, “Design and fabrication of the diffractive X-ray optics at BESSY,” Proc. SPIE 5539, 160–164 (2004).
[Crossref]

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

2002 (5)

I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
[Crossref] [PubMed]

J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27(16), 1403–1405 (2002).
[Crossref] [PubMed]

P. W. Leech, B. A. Sexton, and R. J. Marnock, “Scanning probe microscope analysis of microstructures in optically variable devices,” Microelectron. Eng. 60(3–4), 339–346 (2002).
[Crossref]

A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
[Crossref]

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

2000 (2)

1996 (1)

M. J. Huang, S. L. Yeh, C. K. Lee, and T. K. Huang, “Large-format grating image hologram based on e-beam lithography,” Proc. SPIE 2652, 117–123 (1996).

1995 (2)

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

1991 (1)

R. A. Lee, “Pixelgram: an application of electron-beam lithography for the security printing industry,” Proc. SPIE 1509, 48–54 (1991).
[Crossref]

Alfieri, D.

Aristov, V. V.

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Barada, D.

Borisov, I. S.

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

Chang, L. Y.

De Nicola, S.

Dubonos, S. V.

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Dyachenko, R. Ya.

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Erko, A.

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

Erko, A. I.

A. Firsov, A. I. Erko, and A. Svintsov, “Design and fabrication of the diffractive X-ray optics at BESSY,” Proc. SPIE 5539, 160–164 (2004).
[Crossref]

Ferraro, P.

Fiala, P.

Finizio, A.

Firsov, A.

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

A. Firsov, A. I. Erko, and A. Svintsov, “Design and fabrication of the diffractive X-ray optics at BESSY,” Proc. SPIE 5539, 160–164 (2004).
[Crossref]

Firsov, A. A.

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

Gaifullin, B. N.

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Garcia-Sucerquia, J.

Girnyk, V. I.

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

Grygoruk, V. I.

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

Han, Y. A.

Hayasaki, Y.

Hong, S. H.

Hsieh, J. C.

Huang, M. J.

M. J. Huang, S. L. Yeh, C. K. Lee, and T. K. Huang, “Large-format grating image hologram based on e-beam lithography,” Proc. SPIE 2652, 117–123 (1996).

Huang, T. K.

M. J. Huang, S. L. Yeh, C. K. Lee, and T. K. Huang, “Large-format grating image hologram based on e-beam lithography,” Proc. SPIE 2652, 117–123 (1996).

Iwata, F.

A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
[Crossref]

Javidi, B.

Kato, J.

Kiire, T.

Kostyukevych, S. A.

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

Lashkaryov, V.

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

Lee, C. K.

Lee, J. T.

Lee, R. A.

R. A. Lee, “Micro-technology for anti- counterfeiting,” Microelectron. Eng. 53(1–4), 513–516 (2000).
[Crossref]

R. A. Lee, “Pixelgram: an application of electron-beam lithography for the security printing industry,” Proc. SPIE 1509, 48–54 (1991).
[Crossref]

Leech, P. W.

P. W. Leech, B. A. Sexton, and R. J. Marnock, “Scanning probe microscope analysis of microstructures in optically variable devices,” Microelectron. Eng. 60(3–4), 339–346 (2002).
[Crossref]

Liao, E. H.

Lin, H. H.

Marnock, R. J.

P. W. Leech, B. A. Sexton, and R. J. Marnock, “Scanning probe microscope analysis of microstructures in optically variable devices,” Microelectron. Eng. 60(3–4), 339–346 (2002).
[Crossref]

Matsumura, T.

Matveev, V. N.

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Michette, A. G.

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

Nagano, A.

A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
[Crossref]

Pfauntsch, S. J.

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

Pierattini, G.

Raith, H.

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

Raith, H. F.

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

Richter, I.

Sexton, B. A.

P. W. Leech, B. A. Sexton, and R. J. Marnock, “Scanning probe microscope analysis of microstructures in optically variable devices,” Microelectron. Eng. 60(3–4), 339–346 (2002).
[Crossref]

Skeren, M.

Sugisaka, J.

Svintsov, A.

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

A. Firsov, A. I. Erko, and A. Svintsov, “Design and fabrication of the diffractive X-ray optics at BESSY,” Proc. SPIE 5539, 160–164 (2004).
[Crossref]

Svintsov, A. A.

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Takahashi, S.

A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
[Crossref]

Toda, T.

A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
[Crossref]

Tsai, I. E.

Tu, C. W.

Wu, J. W.

Yamaguchi, I.

Yatagai, T.

Yeh, S. L.

Zaitsev, S. I.

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Appl. Opt. (3)

J. Vac. Sci. Technol. B (1)

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, H. Raith, A. A. Svintsov, and S. I. Zaitsev, “Three-dimension design in electron beam lithography,” J. Vac. Sci. Technol. B 13(6), 2526–2528 (1995).
[Crossref]

Microelectron. Eng. (3)

R. A. Lee, “Micro-technology for anti- counterfeiting,” Microelectron. Eng. 53(1–4), 513–516 (2000).
[Crossref]

P. W. Leech, B. A. Sexton, and R. J. Marnock, “Scanning probe microscope analysis of microstructures in optically variable devices,” Microelectron. Eng. 60(3–4), 339–346 (2002).
[Crossref]

S. V. Dubonos, B. N. Gaifullin, H. F. Raith, A. A. Svintsov, and S. I. Zaitsev, “Proximity correction for 3D structures,” Microelectron. Eng. 27(1-4), 195–198 (1995).
[Crossref]

Opt. Commun. (2)

A. A. Firsov, A. A. Svintsov, S. I. Zaitsev, A. Erko, and V. V. Aristov, “The first synthetic X-ray hologram: results,” Opt. Commun. 202(1-3), 55–59 (2002).
[Crossref]

A. G. Michette, S. J. Pfauntsch, A. Erko, A. Firsov, and A. Svintsov, “Nanometer focusing of X-ray with modified reflection zone plates,” Opt. Commun. 245(1-6), 249–253 (2005).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (5)

R. A. Lee, “Pixelgram: an application of electron-beam lithography for the security printing industry,” Proc. SPIE 1509, 48–54 (1991).
[Crossref]

M. J. Huang, S. L. Yeh, C. K. Lee, and T. K. Huang, “Large-format grating image hologram based on e-beam lithography,” Proc. SPIE 2652, 117–123 (1996).

A. Firsov, A. I. Erko, and A. Svintsov, “Design and fabrication of the diffractive X-ray optics at BESSY,” Proc. SPIE 5539, 160–164 (2004).
[Crossref]

A. Nagano, T. Toda, S. Takahashi, and F. Iwata, “Crystagram Neo”: a high-resolution imaging by EB technology,” Proc. SPIE 4659, 139–147 (2002).
[Crossref]

V. I. Girnyk, V. I. Grygoruk, I. S. Borisov, S. A. Kostyukevych, and V. Lashkaryov, “Stereographic and animated rainbow diffractive images in optical security,” Proc. SPIE 5290, 179–189 (2004).

Other (9)

A. Goncharsky, Anton Goncharsky, “E-beam technology: rising to new levels of protection,” Holography News, (2004).

D. Pizzanelli, “The development of direct-write digital holography, tech review,” (The Holographer, 2004). http://www.holographer.org/articles/hg00001/hg00001.html .

R. L. van Renesse, “Security aspects of commercially available dot matrix and image matrix origination systems,” presented at SPIE International Conference on Optical Holography and its Applications, Kiev, Ukraine, 24–27 May 2004.

R. L. Renesse, ed., Optical Document Security (Artech House, 1994).

Fabrication of OVD with NanoMaker,” http://www.nanomaker.com/nav.php?go=rainbowhol .

NanoMaker. Innovative solutions for nano-lithography,” www.nanomaker.com .

A. Charles, Poynton, Digital Video and HDTV: Algorithms and Interfaces (Morgan Kaufmann Publishers, 2003).

V. V. Aristov, S. V. Dubonos, R. Ya. Dyachenko, B. N. Gaifullin, V. N. Matveev, A. A. Svintsov, and S. I. Zaitsev, “Creation of diffractive optical elements by one step e-beam lithography for optoelectronics and X-ray lithography,” in Proceedings of Baltic Electronics Conference, (Tallinn, Estonia, 1996), pp. 483–486.

Website of the International Holography Manufacturer Association, www.ihma.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Four (from five in total) images of a three-dimensional scene taken at various camera-angles, the angles differing by 5deg.

Fig. 2
Fig. 2

Splitting of the initial color image into three (monochromatic) standard R, G, B images (the image corresponds to yellow ball in the initial image).

Fig. 3
Fig. 3

Graphic presentation of the data for drawing gratings of “red” color (therefore all the gratings are of the same period).

Fig. 4
Fig. 4

Fragment of the data from Fig. 3 approximately corresponding to the yellow ball area in Fig. 2. Also shown are several gratings and two individual gratings of various duty cycles. Due to the proximity effect the grating with a low duty cycle (shown in gray color, low-left) should be exposed with a higher dose, brown color of the low-right grating corresponds to a lower dose due to automatic proximity correction procedure applied.

Fig. 5
Fig. 5

Graphic presentation of lithographic data for the creation of all the five color images (Fig. 1) in the area of the ball. All 15 elementary gratings fill less than 20% of the available area.

Fig. 6
Fig. 6

Each vertical set of three gratings determines the color of an individual pixel and corresponds to one of the five initial images.

Fig. 7
Fig. 7

Photos showing two examples of rainbow holograms resulting from diffraction effects in nanoscaled grating structures, which are produced in a thin resist layer using e-beam lithography. At a certain angle a colored 3D image (right) and a flower (left) are visible.

Fig. 8
Fig. 8

Optical microscope image of the grating structures in a 400 nm thin PMMA layer fabricated with e-beam lithography.

Fig. 9
Fig. 9

SEM micrograph of the electroplated nickel stamp. The grating structure shows features in the submicron and nanometer ranges.

Fig. 10
Fig. 10

Detailed view of the electroplated nickel nanostructures (300 nm high and approx. 150 nm wide).

Fig. 11
Fig. 11

The SEM micrograph shows micro- and nanometer scaled grating structures successfully imprinted into PMMA

Fig. 12
Fig. 12

Scene geometry of rainbow hologram projected from the observer viewpoint.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = 1 2 [ 1 cos ( 2 π h d ) ] .
γ x 2 λ a x ; γ y 2 λ a y .

Metrics