Abstract

Holographic interferometry in the thermal wavelengths range, combining a CO2 laser and digital hologram recording with a microbolometer array based camera, allows simultaneously capturing temperature and surface shape information about objects. This is due to the fact that the holograms are affected by the thermal background emitted by objects at room temperature. We explain the setup and the processing of data which allows decoupling the two types of information. This natural data fusion can be advantageously used in a variety of nondestructive testing applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited]

Marc P. Georges, Jean-François Vandenrijt, Cédric Thizy, Yvan Stockman, Patrick Queeckers, Frank Dubois, and Dominic Doyle
Appl. Opt. 52(1) A102-A116 (2013)

Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm

Jean-François Vandenrijt and Marc P. Georges
Appl. Opt. 49(27) 5067-5075 (2010)

Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays

Igor Alexeenko, Jean-François Vandenrijt, Giancarlo Pedrini, Cédric Thizy, Birgit Vollheim, Wolfgang Osten, and Marc P. Georges
Appl. Opt. 52(1) A56-A67 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Kreis, Handbook of Holographic Interferometry:Optical and Digital Methods (Wiley, 2005).
  2. X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).
  3. D. Burleigh, “Portable combined thermography/shearography NDT system for inspecting large composite structures,” Proc. SPIE 4710, 578–587 (2002).
    [Crossref]
  4. M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
    [Crossref]
  5. S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
    [Crossref]
  6. S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
    [Crossref]
  7. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
    [Crossref] [PubMed]
  8. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16(4), 187–192 (1984).
    [Crossref]
  9. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
    [Crossref]
  10. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
    [Crossref] [PubMed]
  11. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
    [Crossref] [PubMed]
  12. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 µm,” Proc. SPIE 6616, 66162Q (2007).
    [Crossref]
  13. J.-F. Vandenrijt and M. P. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
    [Crossref] [PubMed]
  14. J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
    [Crossref]
  15. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 laser applied to aspheric space reflector testing,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), DW3A.4.
  16. I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
    [Crossref]
  17. I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
    [Crossref] [PubMed]
  18. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
    [Crossref]
  19. M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
    [Crossref]
  20. M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
    [Crossref]
  21. P. Slangen, M. Karray, and P. Picart, “Some figures of merit so as to compare digital Fresnel holography and speckle interferometry,” Proc. SPIE 8082, 808205 (2011).
    [Crossref]
  22. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. Lopez, I. S. De Ocariz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Fringe 2009- 6th International Workshop on Advanced Optical Metrology, 596–599 (2009).
    [Crossref]
  23. M. Ravaro, M. Locatelli, E. Pugliese, I. Di Leo, M. Siciliani de Cumis, F. D’Amato, P. Poggi, L. Consolino, R. Meucci, P. Ferraro, and P. De Natale, “Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser,” Opt. Lett. 39(16), 4843–4846 (2014).
    [Crossref] [PubMed]

2014 (3)

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

M. Ravaro, M. Locatelli, E. Pugliese, I. Di Leo, M. Siciliani de Cumis, F. D’Amato, P. Poggi, L. Consolino, R. Meucci, P. Ferraro, and P. De Natale, “Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser,” Opt. Lett. 39(16), 4843–4846 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (2)

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

2011 (1)

P. Slangen, M. Karray, and P. Picart, “Some figures of merit so as to compare digital Fresnel holography and speckle interferometry,” Proc. SPIE 8082, 808205 (2011).
[Crossref]

2010 (4)

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

J.-F. Vandenrijt and M. P. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref] [PubMed]

2007 (1)

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

2003 (1)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

2002 (1)

D. Burleigh, “Portable combined thermography/shearography NDT system for inspecting large composite structures,” Proc. SPIE 4710, 578–587 (2002).
[Crossref]

1984 (1)

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16(4), 187–192 (1984).
[Crossref]

Aguayo, D. D.

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

Alexeenko, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Ambrosini, D.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

Avdelidis, N. P.

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Bendada, A.

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Bianco, V.

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Burleigh, D.

D. Burleigh, “Portable combined thermography/shearography NDT system for inspecting large composite structures,” Proc. SPIE 4710, 578–587 (2002).
[Crossref]

Cédric, T.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Consolino, L.

D’Amato, F.

De la Torre Ibarra, M. H.

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

De Natale, P.

De Nicola, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Di Leo, I.

Doyle, D.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
[Crossref] [PubMed]

Dubois, F.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
[Crossref] [PubMed]

Feligiotti, M.

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

Ferraro, P.

Finizio, A.

Flores Moreno, J. M.

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

Georges, M.

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

Georges, M. P.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
[Crossref] [PubMed]

J.-F. Vandenrijt and M. P. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Gertrude, A.

Grilli, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Hack, E.

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

Hernández-Montes, M. S.

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

Hrissagis, K.

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Ibarra-Castanedo, C.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Ihle, A.

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

Jorge, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

Karray, M.

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

P. Slangen, M. Karray, and P. Picart, “Some figures of merit so as to compare digital Fresnel holography and speckle interferometry,” Proc. SPIE 8082, 808205 (2011).
[Crossref]

Koui, M.

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Kwon, O.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16(4), 187–192 (1984).
[Crossref]

Lampeas, G.

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

Locatelli, M.

Løkberg, O. J.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16(4), 187–192 (1984).
[Crossref]

Lopez, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

Maldague, X.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Mendoza-Santoyo, F.

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

Meucci, R.

Miccio, L.

Osten, W.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Paoletti, A.

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Paoletti, D.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Paturzo, M.

Pedrini, G.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Pelagotti, A.

Pérez-López, C.

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

Picart, P.

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

P. Slangen, M. Karray, and P. Picart, “Some figures of merit so as to compare digital Fresnel holography and speckle interferometry,” Proc. SPIE 8082, 808205 (2011).
[Crossref]

Pipino, A.

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

Poggi, P.

Pugliese, E.

Queeckers, P.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
[Crossref] [PubMed]

Ravaro, M.

Rochet, J.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

Santulli, C.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

Sarasini, F.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

Sfarra, S.

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Siciliani de Cumis, M.

Siebert, T.

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

Slangen, P.

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

P. Slangen, M. Karray, and P. Picart, “Some figures of merit so as to compare digital Fresnel holography and speckle interferometry,” Proc. SPIE 8082, 808205 (2011).
[Crossref]

Stockman, Y.

Theodorakeas, P.

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Thizy, C.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

Vandenrijt, J.-F.

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
[Crossref] [PubMed]

J.-F. Vandenrijt and M. P. Georges, “Electronic speckle pattern interferometry and digital holographic interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

Venegas, P.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

Vollheim, B.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Appl. Mech. Mater. (1)

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2 laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[Crossref]

Appl. Opt. (3)

Exp. Mech. (1)

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

Insight (1)

S. Sfarra, P. Theodorakeas, C. Ibarra-Castanedo, N. P. Avdelidis, A. Paoletti, D. Paoletti, K. Hrissagis, A. Bendada, M. Koui, and X. Maldague, “Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques,” Insight 54(1), 21–27 (2012).
[Crossref]

Opt. Commun. (1)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 µm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Opt. Eng. (3)

J.-F. Vandenrijt, C. Thizy, P. Queeckers, F. Dubois, D. Doyle, and M. P. Georges, “Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors,” Opt. Eng. 53(11), 112309 (2014).
[Crossref]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, J. Rochet, B. Vollheim, I. Jorge, P. Venegas, I. Lopez, W. Osten, and M. P. Georges, “Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions,” Opt. Eng. 52(10), 101903 (2013).
[Crossref]

M. H. De la Torre Ibarra, J. M. Flores Moreno, D. D. Aguayo, M. S. Hernández-Montes, C. Pérez-López, and F. Mendoza-Santoyo, “Displacement measurements over a square meter area using digital holographic interferometry,” Opt. Eng. 53(9), 092009 (2014).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16(4), 187–192 (1984).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (4)

P. Slangen, M. Karray, and P. Picart, “Some figures of merit so as to compare digital Fresnel holography and speckle interferometry,” Proc. SPIE 8082, 808205 (2011).
[Crossref]

D. Burleigh, “Portable combined thermography/shearography NDT system for inspecting large composite structures,” Proc. SPIE 4710, 578–587 (2002).
[Crossref]

M. Feligiotti, E. Hack, G. Lampeas, T. Siebert, A. Pipino, and A. Ihle, “Assessment of impact damage in CFRP by combined thermal and speckle methods,” Proc. SPIE 7387, 73870H (2010).
[Crossref]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 µm,” Proc. SPIE 6616, 66162Q (2007).
[Crossref]

Strain (1)

S. Sfarra, C. Ibarra-Castanedo, C. Santulli, F. Sarasini, D. Ambrosini, D. Paoletti, and X. Maldague, “Eco-friendly laminates: From the indentation to non-destructive evaluation by optical and infrared monitoring techniques,” Strain 49(2), 175–189 (2013).
[Crossref]

Other (4)

T. Kreis, Handbook of Holographic Interferometry:Optical and Digital Methods (Wiley, 2005).

X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley-Interscience, 2001).

M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 laser applied to aspheric space reflector testing,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), DW3A.4.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. Lopez, I. S. De Ocariz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths. Scattering requirements,” in Fringe 2009- 6th International Workshop on Advanced Optical Metrology, 596–599 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Principle of combination: (a) hologram or specklegram recorded at thermal wavelengths, (b) thermal part of the former, (c) interference part of the former, (d) line profile along line y = Y.
Fig. 2
Fig. 2 Mobile LWIR holographic setup: schemes of (a) upper bench with camera, (b) lower bench, (c) beam separation assembly; (d) picture of the instrument.
Fig. 3
Fig. 3 Spectral properties of the beam combiner for s- and p-polarizations: (a) transmittance, (b) reflectance.
Fig. 4
Fig. 4 Typical temporal sequence of operations for simultaneous thermogram measurement.
Fig. 5
Fig. 5 Typical temporal sequence of operations for separate initial thermogram measurement.
Fig. 6
Fig. 6 (a) Sandwich panel with circular repair in the centre. The zone observed in marked by red dots. (b) Interference between reference and object beams.
Fig. 7
Fig. 7 (a) Temperature variation obtained by preliminary thermogram capture, (b) temperature variation obtained by reconstruction through the phase-shifting approach, (c) phase variation (modulo 2π), (d) grey level deformation map corresponding to (c), (e) hybrid representation of the deformation and temperature variation.
Fig. 8
Fig. 8 (a) Heating baseplate with three coupons. (b) Setup with separate measurement techniques for deformation through dimensional measurement by fringe projection and temperature by thermographic camera.
Fig. 9
Fig. 9 (a) Deformation measurement by fringe projection, (b) temperature measurement by separate thermographic camera, (c) phase map showing deformation of the three coupons (baseplate is masked), (d) simultaneous temperature variation, (e) hybrid view of deformation and temperature variation showing the baseplate behavior.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I H ( x , y , t ) = I R ( x , y , t ) + I O ( x , y , t ) + 2 I R ( x , y , t ) . I O ( x , y , t ) cos ( ϕ ( x , y , t ) ) ,
I ( x , y , t ) = I H ( x , y , t ) + I T h ( x , y , t ) .
I n ( t a ) I a , n = I T h , a + I R , a + I O , a + 2 I R , a I O , a cos ( ϕ a + ( n 1 ) π 2 ) ,
ϕ a = tan 1 [ ( I a , 4 I a , 2 ) / ( I a , 1 I a , 3 ) ] .
I T h , a = 1 4 ( I 1 , a + I 2 , a + I 3 , a + I 4 , a ) I R , a I O , a .
Δ ϕ = 2 π λ s . d ,
Δ I T h = 1 4 [ i = 1 4 I i , a i = 1 4 I i , b ] Δ I R Δ I O ,
Δ I T h ( r ) = 1 4 [ i = 1 4 I i , a i = 1 4 I i , b ] .
Δ I T h ( p ) = I T h ( t a ) I T h ( t b ) .

Metrics